Suppr超能文献

石墨烯纳米孔的稳定化

Stabilization of graphene nanopore.

作者信息

Lee Jaekwang, Yang Zhiqing, Zhou Wu, Pennycook Stephen J, Pantelides Sokrates T, Chisholm Matthew F

机构信息

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831;Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235;

Shenyang National Laboratory for Material Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China; and.

出版信息

Proc Natl Acad Sci U S A. 2014 May 27;111(21):7522-6. doi: 10.1073/pnas.1400767111. Epub 2014 May 12.

Abstract

Graphene is an ultrathin, impervious membrane. The controlled introduction of nanoscale pores in graphene would lead to applications that involve water purification, chemical separation, and DNA sequencing. However, graphene nanopores are unstable against filling by carbon adatoms. Here, using aberration-corrected scanning transmission electron microscopy and density-functional calculations, we report that Si atoms stabilize graphene nanopores by bridging the dangling bonds around the perimeter of the hole. Si-passivated pores remain intact even under intense electron beam irradiation, and they were observed several months after the sample fabrication, demonstrating that these structures are intrinsically robust and stable against carbon filling. Theoretical calculations reveal the underlying mechanism for this stabilization effect: Si atoms bond strongly to the graphene edge, and their preference for tetrahedral coordination forces C adatoms to form dendrites sticking out of the graphene plane, instead of filling the nanopore. Our results provide a novel way to develop stable nanopores, which is a major step toward reliable graphene-based molecular translocation devices.

摘要

石墨烯是一种超薄且不可渗透的薄膜。在石墨烯中可控地引入纳米级孔隙将带来涉及水净化、化学分离和DNA测序的应用。然而,石墨烯纳米孔对于被碳吸附原子填充是不稳定的。在此,我们使用像差校正扫描透射电子显微镜和密度泛函计算,报告硅原子通过桥接孔周边的悬空键来稳定石墨烯纳米孔。即使在强电子束照射下,硅钝化的孔隙仍保持完整,并且在样品制备几个月后仍能观察到,这表明这些结构本质上是坚固的且对碳填充稳定。理论计算揭示了这种稳定化效应的潜在机制:硅原子与石墨烯边缘强烈结合,并且它们对四面体配位的偏好促使碳吸附原子形成伸出石墨烯平面的枝晶,而不是填充纳米孔。我们的结果提供了一种开发稳定纳米孔的新方法,这是迈向可靠的基于石墨烯的分子转运器件的重要一步。

相似文献

1
Stabilization of graphene nanopore.石墨烯纳米孔的稳定化
Proc Natl Acad Sci U S A. 2014 May 27;111(21):7522-6. doi: 10.1073/pnas.1400767111. Epub 2014 May 12.
2
Atom-by-atom nucleation and growth of graphene nanopores.原子级别的石墨烯纳米孔的成核与生长。
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5953-7. doi: 10.1073/pnas.1119827109. Epub 2012 Apr 6.
4
Graphene nanopore devices for DNA sensing.用于DNA传感的石墨烯纳米孔器件。
Methods Mol Biol. 2012;870:211-26. doi: 10.1007/978-1-61779-773-6_12.
5
Controlled formation of closed-edge nanopores in graphene.可控形成石墨烯中的封闭边缘纳米孔。
Nanoscale. 2015 Jul 21;7(27):11602-10. doi: 10.1039/c5nr02277k. Epub 2015 Jun 19.
10
Noise and its reduction in graphene based nanopore devices.基于石墨烯纳米孔器件的噪声及其降低。
Nanotechnology. 2013 Dec 13;24(49):495503. doi: 10.1088/0957-4484/24/49/495503. Epub 2013 Nov 15.

引用本文的文献

1
Single-Molecule Electrical Profiling of Peptides and Proteins.肽和蛋白质的单分子电学分析
Adv Sci (Weinh). 2024 Jul;11(28):e2401877. doi: 10.1002/advs.202401877. Epub 2024 Apr 19.
2
Evolution of nanopores in hexagonal boron nitride.六方氮化硼中纳米孔的演变
Commun Chem. 2023 Jun 5;6(1):108. doi: 10.1038/s42004-023-00899-1.
4
Synthesis of holey graphene for advanced nanotechnological applications.用于先进纳米技术应用的多孔石墨烯的合成。
RSC Adv. 2021 Aug 12;11(44):27381-27405. doi: 10.1039/d1ra05157a. eCollection 2021 Aug 9.
7
Atomic-Scale Structural Modification of 2D Materials.二维材料的原子尺度结构修饰
Adv Sci (Weinh). 2019 Jan 22;6(5):1801501. doi: 10.1002/advs.201801501. eCollection 2019 Mar 6.
8
Direct electric field imaging of graphene defects.石墨烯缺陷的直接电场成像。
Nat Commun. 2018 Sep 24;9(1):3878. doi: 10.1038/s41467-018-06387-8.
10
Observation of ionic Coulomb blockade in nanopores.观察纳米孔中的离子库仑阻塞现象。
Nat Mater. 2016 Aug;15(8):850-5. doi: 10.1038/nmat4607. Epub 2016 Mar 28.

本文引用的文献

3
Direct determination of the chemical bonding of individual impurities in graphene.直接测定石墨烯中单个杂质的化学键。
Phys Rev Lett. 2012 Nov 16;109(20):206803. doi: 10.1103/PhysRevLett.109.206803. Epub 2012 Nov 15.
5
Water desalination: Graphene cleans up water.海水淡化:石墨烯净化水质。
Nat Nanotechnol. 2012 Sep;7(9):552-4. doi: 10.1038/nnano.2012.153.
6
Oxidation resistance of reactive atoms in graphene.石墨烯中活性原子的抗氧化性。
Nano Lett. 2012 Sep 12;12(9):4651-5. doi: 10.1021/nl301952e. Epub 2012 Aug 23.
7
Graphene reknits its holes.石墨烯自我修复缺陷。
Nano Lett. 2012 Aug 8;12(8):3936-40. doi: 10.1021/nl300985q. Epub 2012 Jul 10.
8
Water desalination across nanoporous graphene.通过纳米多孔石墨烯进行海水淡化。
Nano Lett. 2012 Jul 11;12(7):3602-8. doi: 10.1021/nl3012853. Epub 2012 Jun 12.
9
Atom-by-atom nucleation and growth of graphene nanopores.原子级别的石墨烯纳米孔的成核与生长。
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5953-7. doi: 10.1073/pnas.1119827109. Epub 2012 Apr 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验