Suppr超能文献

金属吸附氟化纳米多孔石墨烯中的可调磁性

Tunable magnetism in metal adsorbed fluorinated nanoporous graphene.

作者信息

Kumar Pankaj, Sharma Vinit, Reboredo Fernando A, Yang Li-Ming, Pushpa Raghani

机构信息

Department of Physics, Boise State University, Boise, ID 83725, USA.

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

出版信息

Sci Rep. 2016 Aug 24;6:31841. doi: 10.1038/srep31841.

Abstract

Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we investigate the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. Our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.

摘要

开发具有可调谐磁态的纳米结构对于设计新型数据存储和量子信息设备至关重要。利用密度泛函理论,我们研究了钨吸附的三空位氟化(TVF)石墨烯的热力学稳定性和磁性。我们通过基于石墨烯材料的缺陷工程展示了强大的结构-性能关系及其对外部刺激的响应。缺陷态与化学吸附原子之间的复杂相互作用导致了7 μB的大磁矩以及17 meV的高面内磁晶各向异性能量(MAE)。在电场影响下,观察到伴随着MAE变化的自旋交叉效应。自旋构型的归因变化是由缺陷态之间交换耦合的改变以及金属络合物d轨道占据情况的变化引起的。我们的预测为控制基于石墨烯的自旋电子和非易失性存储设备中的磁性开辟了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32ff/4995493/d02770ac2565/srep31841-f1.jpg

相似文献

1
Tunable magnetism in metal adsorbed fluorinated nanoporous graphene.
Sci Rep. 2016 Aug 24;6:31841. doi: 10.1038/srep31841.
4
Large magnetic anisotropy and strain induced enhancement of magnetic anisotropy in monolayer TaTe.
Phys Chem Chem Phys. 2017 Sep 13;19(35):24341-24347. doi: 10.1039/c7cp04445c.
5
Large magnetic anisotropy in an OsIr dimer anchored in defective graphene.
Nanotechnology. 2021 Mar 19;32(23). doi: 10.1088/1361-6528/abe966.
7
Tunable magnetocrystalline anisotropy of two-dimensional FeGeTe with adsorbed 5d-transition metal.
Phys Chem Chem Phys. 2022 Sep 14;24(35):21470-21476. doi: 10.1039/d2cp02083a.
8
Tunable magnetism of a single-carbon vacancy in graphene.
Sci Bull (Beijing). 2020 Feb 15;65(3):194-200. doi: 10.1016/j.scib.2019.11.023. Epub 2019 Nov 23.
9
Emergence of magnetic anisotropy by surface adsorption of transition metal dimers on γ-graphyne framework.
J Phys Condens Matter. 2021 Apr 27;33(20). doi: 10.1088/1361-648X/abe513.
10
Excellent 5f-electron magnet of actinide atom decorated gh-CN monolayer.
Phys Chem Chem Phys. 2023 Oct 25;25(41):28020-28033. doi: 10.1039/d3cp02954a.

本文引用的文献

1
Control of magnetism by electric fields.
Nat Nanotechnol. 2015 Mar;10(3):209-20. doi: 10.1038/nnano.2015.22.
3
Tailoring the magnetism of Co atoms on graphene through substrate hybridization.
Phys Rev Lett. 2014 Oct 24;113(17):177201. doi: 10.1103/PhysRevLett.113.177201. Epub 2014 Oct 20.
4
Graphene spintronics.
Nat Nanotechnol. 2014 Oct;9(10):794-807. doi: 10.1038/nnano.2014.214.
5
The role of the bridging atom in stabilizing odd numbered graphene vacancies.
Nano Lett. 2014 Jul 9;14(7):3972-80. doi: 10.1021/nl501320a. Epub 2014 Jun 24.
6
Stabilization of graphene nanopore.
Proc Natl Acad Sci U S A. 2014 May 27;111(21):7522-6. doi: 10.1073/pnas.1400767111. Epub 2014 May 12.
7
Reaching the magnetic anisotropy limit of a 3d metal atom.
Science. 2014 May 30;344(6187):988-92. doi: 10.1126/science.1252841. Epub 2014 May 8.
8
Spin-crossover and massive anisotropy switching of 5d transition metal atoms on graphene nanoflakes.
Nano Lett. 2014 Jun 11;14(6):3364-8. doi: 10.1021/nl500872c. Epub 2014 May 2.
9
Giant magnetic anisotropy of transition-metal dimers on defected graphene.
Nano Lett. 2014;14(4):1853-8. doi: 10.1021/nl404627h. Epub 2014 Mar 27.
10
Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes.
Nano Lett. 2014 Mar 12;14(3):1234-41. doi: 10.1021/nl404118f. Epub 2014 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验