Kumar Pankaj, Sharma Vinit, Reboredo Fernando A, Yang Li-Ming, Pushpa Raghani
Department of Physics, Boise State University, Boise, ID 83725, USA.
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
Sci Rep. 2016 Aug 24;6:31841. doi: 10.1038/srep31841.
Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we investigate the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. Our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.
开发具有可调谐磁态的纳米结构对于设计新型数据存储和量子信息设备至关重要。利用密度泛函理论,我们研究了钨吸附的三空位氟化(TVF)石墨烯的热力学稳定性和磁性。我们通过基于石墨烯材料的缺陷工程展示了强大的结构-性能关系及其对外部刺激的响应。缺陷态与化学吸附原子之间的复杂相互作用导致了7 μB的大磁矩以及17 meV的高面内磁晶各向异性能量(MAE)。在电场影响下,观察到伴随着MAE变化的自旋交叉效应。自旋构型的归因变化是由缺陷态之间交换耦合的改变以及金属络合物d轨道占据情况的变化引起的。我们的预测为控制基于石墨烯的自旋电子和非易失性存储设备中的磁性开辟了一条有前景的途径。