Suppr超能文献

通过拉曼光纤探针监测的人口腔黏膜组织工程构建体

Human oral mucosa tissue-engineered constructs monitored by Raman fiber-optic probe.

作者信息

Khmaladze Alexander, Kuo Shiuhyang, Kim Roderick Y, Matthews Robert V, Marcelo Cynthia L, Feinberg Stephen E, Morris Michael D

机构信息

1 Department of Chemistry, School of Dentistry, University of Michigan , Ann Arbor, Michigan.

出版信息

Tissue Eng Part C Methods. 2015 Jan;21(1):46-51. doi: 10.1089/ten.TEC.2013.0622.

Abstract

In maxillofacial and oral surgery, there is a need for the development of tissue-engineered constructs. They are used for reconstructions due to trauma, dental implants, congenital defects, or oral cancer. A noninvasive monitoring of the fabrication of tissue-engineered constructs at the production and implantation stages done in real time is extremely important for predicting the success of tissue-engineered grafts. We demonstrated a Raman spectroscopic probe system, its design and application, for real-time ex vivo produced oral mucosa equivalent (EVPOME) constructs noninvasive monitoring. We performed in vivo studies to find Raman spectroscopic indicators for postimplanted EVPOME failure and determined that Raman spectra of EVPOMEs preexposed to thermal stress during manufacturing procedures displayed correlation of the band height ratio of CH2 deformation to phenylalanine ring breathing modes, giving a Raman metric to distinguish between healthy and compromised postimplanted constructs. This study is the step toward our ultimate goal to develop a stand-alone system, to be used in a clinical setting, where the data collection and analysis are conducted on the basis of these spectroscopic indicators with minimal user intervention.

摘要

在颌面及口腔外科领域,组织工程构建体的开发具有必要性。它们用于因创伤、牙种植体、先天性缺陷或口腔癌导致的重建手术。在生产和植入阶段对组织工程构建体的制造过程进行实时无创监测,对于预测组织工程移植物的成功与否极为重要。我们展示了一种拉曼光谱探测系统及其设计与应用,用于对实时离体产生的口腔黏膜等效物(EVPOME)构建体进行无创监测。我们进行了体内研究,以寻找植入后EVPOME失败的拉曼光谱指标,并确定在制造过程中预先暴露于热应激的EVPOME的拉曼光谱显示出CH2变形与苯丙氨酸环呼吸模式的谱带高度比具有相关性,从而给出了一种用于区分植入后健康和受损构建体的拉曼指标。本研究朝着我们的最终目标迈出了一步,即开发一种独立系统,用于临床环境,在该系统中,数据收集和分析将基于这些光谱指标进行,且用户干预最少。

相似文献

1
Human oral mucosa tissue-engineered constructs monitored by Raman fiber-optic probe.
Tissue Eng Part C Methods. 2015 Jan;21(1):46-51. doi: 10.1089/ten.TEC.2013.0622.
2
Tissue-engineered constructs of human oral mucosa examined by Raman spectroscopy.
Tissue Eng Part C Methods. 2013 Apr;19(4):299-306. doi: 10.1089/ten.TEC.2012.0287. Epub 2012 Nov 16.
3
Biochemical indicators of implantation success of tissue-engineered oral mucosa.
J Dent Res. 2015 Jan;94(1):78-84. doi: 10.1177/0022034514554225. Epub 2014 Oct 27.
4
Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy.
Biomaterials. 2017 Sep;140:128-137. doi: 10.1016/j.biomaterials.2017.06.015. Epub 2017 Jun 14.
5
Fabrication of Large Size Ex Vivo-Produced Oral Mucosal Equivalents for Clinical Application.
Tissue Eng Part C Methods. 2015 Sep;21(9):872-80. doi: 10.1089/ten.tec.2014.0600. Epub 2015 Apr 15.
6
Keratinocytes of tissue-engineered human oral mucosa promote re-epithelialization after intraoral grafting in athymic mice.
J Oral Maxillofac Surg. 2012 May;70(5):1199-214. doi: 10.1016/j.joms.2011.03.057. Epub 2011 Jul 29.
7
Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.
Anal Chem. 2013 Dec 3;85(23):11297-303. doi: 10.1021/ac402059v. Epub 2013 Nov 12.
8
Comparison of two decellularized dermal equivalents.
J Tissue Eng Regen Med. 2018 Apr;12(4):983-990. doi: 10.1002/term.2530. Epub 2017 Nov 5.
9
High-frequency ultrasonic imaging of growth and development in manufactured engineered oral mucosal tissue surfaces.
Ultrasound Med Biol. 2014 Sep;40(9):2244-51. doi: 10.1016/j.ultrasmedbio.2014.03.007. Epub 2014 Jun 23.
10
Construction and characterization of a tissue-engineered oral mucosa equivalent based on a chitosan-fish scale collagen composite.
J Biomed Mater Res B Appl Biomater. 2012 Oct;100(7):1792-802. doi: 10.1002/jbm.b.32746. Epub 2012 Jul 18.

引用本文的文献

1
Unveiling the Molecular Secrets: A Comprehensive Review of Raman Spectroscopy in Biological Research.
ACS Omega. 2024 Dec 3;9(51):50049-50063. doi: 10.1021/acsomega.4c00591. eCollection 2024 Dec 24.
2
In vivo non-invasive monitoring of tissue development in 3D printed subcutaneous bone scaffolds using fibre-optic Raman spectroscopy.
Biomater Biosyst. 2022 Jul 28;7:100059. doi: 10.1016/j.bbiosy.2022.100059. eCollection 2022 Aug.
3
Longitudinal Monitoring of Disease Progression in Inflammatory Arthritis Animal Models Using Raman Spectroscopy.
Anal Chem. 2023 Feb 21;95(7):3720-3728. doi: 10.1021/acs.analchem.2c04743. Epub 2023 Feb 9.
4
Noninvasive Optical Assessment of Implanted Tissue-Engineered Construct Success .
Tissue Eng Part C Methods. 2021 May;27(5):287-295. doi: 10.1089/ten.TEC.2021.0018.
5
Methamphetamine-induced apoptosis in glial cells examined under marker-free imaging modalities.
J Biomed Opt. 2019 Apr;24(4):1-10. doi: 10.1117/1.JBO.24.4.046503.
6
Raman spectroscopy and regenerative medicine: a review.
NPJ Regen Med. 2017 May 15;2:12. doi: 10.1038/s41536-017-0014-3. eCollection 2017.
7
Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy.
Biomaterials. 2017 Sep;140:128-137. doi: 10.1016/j.biomaterials.2017.06.015. Epub 2017 Jun 14.
8
Real-Time Visualization of Tissue Surface Biochemical Features Derived From Fluorescence Lifetime Measurements.
IEEE Trans Med Imaging. 2016 Aug;35(8):1802-11. doi: 10.1109/TMI.2016.2530621. Epub 2016 Feb 15.
9
Biochemical indicators of implantation success of tissue-engineered oral mucosa.
J Dent Res. 2015 Jan;94(1):78-84. doi: 10.1177/0022034514554225. Epub 2014 Oct 27.

本文引用的文献

1
Intraoral grafting of tissue-engineered human oral mucosa.
Int J Oral Maxillofac Implants. 2013 Sep-Oct;28(5):e295-303. doi: 10.11607/jomi.te11.
2
Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality.
J Biomed Opt. 2012 Sep;17(9):90502-1. doi: 10.1117/1.JBO.17.9.090502.
3
Tissue-engineered constructs of human oral mucosa examined by Raman spectroscopy.
Tissue Eng Part C Methods. 2013 Apr;19(4):299-306. doi: 10.1089/ten.TEC.2012.0287. Epub 2012 Nov 16.
4
Tissue-engineered oral mucosa.
J Dent Res. 2012 Jul;91(7):642-50. doi: 10.1177/0022034511435702. Epub 2012 Jan 19.
5
Keratinocytes of tissue-engineered human oral mucosa promote re-epithelialization after intraoral grafting in athymic mice.
J Oral Maxillofac Surg. 2012 May;70(5):1199-214. doi: 10.1016/j.joms.2011.03.057. Epub 2011 Jul 29.
9
Development of a tissue-engineered human oral mucosa: from the bench to the bed side.
Cells Tissues Organs. 2004;176(1-3):134-52. doi: 10.1159/000075034.
10
Automated method for subtraction of fluorescence from biological Raman spectra.
Appl Spectrosc. 2003 Nov;57(11):1363-7. doi: 10.1366/000370203322554518.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验