Sengupta Samarpita, Smith Dean P
Pheromones are chemicals released from one individual to influence the behavior of another animal of the same species (Karlson and Luscher 1959). Detection of these pheromones can produce broad developmental or endocrine changes (priming pheromones) or elicit specific behaviors (releaser pheromones). Releaser pheromones elicit innate behaviors in the receiving individual, and are widely used in the animal kingdom, often to guide mating behavior toward appropriate partners. Pheromones are used to guide social interactions in both vertebrate and invertebrate animals. The social insects (ants, bees, and termites) have taken great advantage of pheromone signaling to create a chemical language that guides an array of behaviors and developmental programs essential for the overall functioning of the colony (reviewed in Alaux et al. 2010). Therefore, understanding how pheromones are detected and how this information is ultimately converted into specific behaviors is of great interest. In this chapter we focus on volatile insect pheromone detection and processing. Insects are well known to have exquisite sensitivity to pheromones. For example, sex pheromones released from female moths attract male mating partners over great distances (Carde and Willis 2008; Fabre 1916), and males can detect single molecules (Kaissling and Priesner 1970). How this remarkable sensitivity is achieved remains poorly understood. Studies utilizing have been instrumental in elucidating the molecular mechanisms underlying volatile pheromone transduction (reviewed in Ha and Smith 2009; Ronderos and Smith 2009; Smith 2012; Vosshall 2008). Here we review recent progress in understanding the detection and neuronal circuitry underlying behaviors elicited by the releaser pheromone 11--vaccenyl acetate (cVA). In addition, the neuronal circuits activated by cVA are beginning to be worked out. We discuss recent findings suggesting that the mechanisms for detection of contact (taste) pheromones (including cVA) are distinct from those used for volatile pheromones. Finally, to put these findings in the larger context, lessons learned in the fruit fly are likely to be relevant to other insect pheromone systems, and may reveal general principles underlying pheromone-induced behaviors in all animals. This information will provide the basis for novel approaches that are more selective than chemical pesticides to control insect species that cause human disease and inflict crop damage.
信息素是由一个个体释放出来的化学物质,用于影响同一物种的另一只动物的行为(卡尔森和卢舍尔,1959年)。检测到这些信息素会引发广泛的发育或内分泌变化(启动信息素)或引发特定行为(释放信息素)。释放信息素会在接收个体中引发先天行为,在动物界被广泛使用,常用于引导与合适配偶的交配行为。信息素被用于指导脊椎动物和无脊椎动物的社交互动。群居昆虫(蚂蚁、蜜蜂和白蚁)充分利用了信息素信号来创造一种化学语言,这种语言指导着一系列对蚁群整体运作至关重要的行为和发育程序(见阿拉克斯等人,2010年的综述)。因此,了解信息素是如何被检测到的以及这些信息最终是如何转化为特定行为的,具有极大的研究价值。在本章中,我们将重点关注挥发性昆虫信息素的检测和处理。众所周知,昆虫对信息素具有极高的敏感性。例如,雌蛾释放的性信息素能在很远的距离吸引雄性配偶(卡德和威利斯,2008年;法布尔,1916年),而且雄性能够检测到单个分子(凯斯林和普里斯纳,1970年)。然而,这种非凡的敏感性是如何实现的,目前仍知之甚少。利用[具体研究方法未给出]的研究有助于阐明挥发性信息素转导的分子机制(见哈和史密斯,2009年;龙德罗斯和史密斯,2009年;史密斯,2012年;沃斯哈尔,2008年的综述)。在这里,我们回顾了在理解释放信息素乙酸11 - 顺 - 乙烯酯(cVA)引发的行为的检测和神经回路方面的最新进展。此外,由cVA激活的神经回路也开始得到研究。我们讨论了最近的研究结果,这些结果表明接触(味觉)信息素(包括cVA)与挥发性信息素的检测机制不同。最后,为了将这些研究结果置于更广泛的背景中,在果蝇身上获得的经验教训可能与其他昆虫信息素系统相关,并可能揭示所有动物中信息素诱导行为的一般原则。这些信息将为比化学杀虫剂更具选择性的新方法提供基础,以控制那些导致人类疾病和造成作物损害的昆虫物种。