Ling Zi-Wei, He Long-Bin, Zeng Hui
Ying Yong Sheng Tai Xue Bao. 2014 Feb;25(2):545-52.
Soil moisture products derived from microwave remote sensing data are commonly used in the studies of large-scale water resources or climate change. However, the spatial resolutions of these products are usually too coarse to be used in regional- or watershed-scale studies. Therefore, it is necessary to spatially downscale the coarse-resolution soil moisture products for use in regional- or watershed-scale studies. The UCLA method is one of the methods for spatially downscaling soil moisture products. In this method, the spatial indices (Ts/VI indices) calculated from land surface temperature and vegetation index are used as auxiliary variables for spatial downscaling. In this paper, we compared the performance of the UCLA method for spatially downscaling the coarse-resolution AMSR-E soil moisture products, using three Ts/VI indices as auxiliary variables, i. e., the soil wetness index (SW), temperature vegetation dryness index (TVDI), and vegetation temperature condition index (VTCI). These auxiliary variables were calculated from the products of MODIS land surface temperature (MYD11A1) and MODIS vegetation index (MYD13A2). The downscaled results using the three Ts/VI indices were all reasonable. However, the downscaled results using TVDI and VTCI were better than using SW. Therefore, we concluded that TVDI and VTCI are more suitable than SW to be used as the auxiliary variable when applying the UCLA method for downscaling soil moisture products. Finally, we discussed the error sources of applying the UCLA method, such as measurement errors of coarse resolution soil products, calculation errors from spatial indices, and errors from the UCLA method itself, and we also discussed the potential improvements of future research.
源自微波遥感数据的土壤湿度产品常用于大规模水资源或气候变化研究。然而,这些产品的空间分辨率通常太粗糙,无法用于区域或流域尺度的研究。因此,有必要对粗分辨率土壤湿度产品进行空间降尺度处理,以用于区域或流域尺度的研究。加州大学洛杉矶分校(UCLA)方法是土壤湿度产品空间降尺度处理的方法之一。在该方法中,根据地表温度和植被指数计算出的空间指数(Ts/VI指数)被用作空间降尺度的辅助变量。在本文中,我们使用三个Ts/VI指数作为辅助变量,即土壤湿度指数(SW)、温度植被干旱指数(TVDI)和植被温度状况指数(VTCI),比较了UCLA方法对粗分辨率先进微波扫描辐射计-地球观测系统(AMSR-E)土壤湿度产品进行空间降尺度处理的性能。这些辅助变量是根据中分辨率成像光谱仪(MODIS)地表温度产品(MYD11A1)和MODIS植被指数产品(MYD13A2)计算得出的。使用这三个Ts/VI指数得到的降尺度结果都合理。然而,使用TVDI和VTCI得到的降尺度结果比使用SW的更好。因此,我们得出结论,在应用UCLA方法对土壤湿度产品进行降尺度处理时,TVDI和VTCI比SW更适合用作辅助变量。最后,我们讨论了应用UCLA方法的误差来源,如粗分辨率土壤产品的测量误差、空间指数的计算误差以及UCLA方法本身的误差,并且我们还讨论了未来研究可能的改进方向。