Institute of Industrial Science, The University of Tokyo, Kashiwa, Chiba 277-8574, Japan.
Institute of Engineering Innovation, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan.
Sensors (Basel). 2019 Sep 11;19(18):3924. doi: 10.3390/s19183924.
The assimilation of radiometer and synthetic aperture radar (SAR) data is a promising recent technique to downscale soil moisture products, yet it requires land surface parameters and meteorological forcing data at a high spatial resolution. In this study, we propose a new downscaling approach, named integrated passive and active downscaling (I-PAD), to achieve high spatial and temporal resolution soil moisture datasets over regions without detailed soil data. The Advanced Microwave Scanning Radiometer (AMSR-E) and Phased Array-type L-band SAR (PALSAR) data are combined through a dual-pass land data assimilation system to obtain soil moisture at 1 km resolution. In the first step, fine resolution model parameters are optimized based on fine resolution PALSAR soil moisture and moderate-resolution imaging spectroradiometer (MODIS) leaf area index data, and coarse resolution AMSR-E brightness temperature data. Then, the 25 km AMSR-E observations are assimilated into a land surface model at 1 km resolution with a simple but computationally low-cost algorithm that considers the spatial resolution difference. Precipitation data are used as the only inputs from ground measurements. The evaluations at the two lightly vegetated sites in Mongolia and the Little Washita basin show that the time series of soil moisture are improved at most of the observation by the assimilation scheme. The analyses reveal that I-PAD can capture overall spatial trends of soil moisture within the coarse resolution radiometer footprints, demonstrating the potential of the algorithm to be applied over data-sparse regions. The capability and limitation are discussed based on the simple optimization and assimilation schemes used in the algorithm.
辐射计和合成孔径雷达 (SAR) 数据同化是一种很有前途的方法,可以将土壤湿度产品进行下转换,但它需要高空间分辨率的陆地表面参数和气象强迫数据。在本研究中,我们提出了一种新的下转换方法,称为综合无源和有源下转换(I-PAD),以便在没有详细土壤数据的区域获得具有高时空分辨率的土壤湿度数据集。先进微波扫描辐射计 (AMSR-E) 和相控阵 L 波段 SAR (PALSAR) 数据通过双通陆面数据同化系统进行组合,以获得 1km 分辨率的土壤湿度。在第一步中,基于细分辨率 PALSAR 土壤湿度和中分辨率成像光谱仪 (MODIS) 叶面积指数数据以及粗分辨率 AMSR-E 亮温数据对精细分辨率模型参数进行优化。然后,使用降水数据作为从地面测量获得的唯一输入,将 25km 的 AMSR-E 观测值同化到 1km 分辨率的陆面模型中,采用一种简单但计算成本低的算法,考虑到空间分辨率的差异。在蒙古的两个轻度植被区和小沃希塔流域的两个站点进行的评估表明,同化方案改进了大多数观测点的土壤湿度时间序列。分析表明,I-PAD 可以捕捉到粗分辨率辐射计足迹内土壤湿度的整体空间趋势,表明该算法在数据稀疏区域具有应用潜力。基于算法中使用的简单优化和同化方案,讨论了该算法的能力和局限性。