Pedreira C, Vaudano A E, Thornton R C, Chaudhary U J, Vulliemoz S, Laufs H, Rodionov R, Carmichael D W, Lhatoo S D, Guye M, Quian Quiroga R, Lemieux L
Centre for Systems Neuroscience, The University of Leicester, UK.
Department of Neuroscience, NOCSAE Hospital, University of Modena e Reggio Emilia, Modena, Italy; Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
Neuroimage. 2014 Oct 1;99:461-76. doi: 10.1016/j.neuroimage.2014.05.009. Epub 2014 May 12.
Scalp EEG recordings and the classification of interictal epileptiform discharges (IED) in patients with epilepsy provide valuable information about the epileptogenic network, particularly by defining the boundaries of the "irritative zone" (IZ), and hence are helpful during pre-surgical evaluation of patients with severe refractory epilepsies. The current detection and classification of epileptiform signals essentially rely on expert observers. This is a very time-consuming procedure, which also leads to inter-observer variability. Here, we propose a novel approach to automatically classify epileptic activity and show how this method provides critical and reliable information related to the IZ localization beyond the one provided by previous approaches. We applied Wave_clus, an automatic spike sorting algorithm, for the classification of IED visually identified from pre-surgical simultaneous Electroencephalogram-functional Magnetic Resonance Imagining (EEG-fMRI) recordings in 8 patients affected by refractory partial epilepsy candidate for surgery. For each patient, two fMRI analyses were performed: one based on the visual classification and one based on the algorithmic sorting. This novel approach successfully identified a total of 29 IED classes (compared to 26 for visual identification). The general concordance between methods was good, providing a full match of EEG patterns in 2 cases, additional EEG information in 2 other cases and, in general, covering EEG patterns of the same areas as expert classification in 7 of the 8 cases. Most notably, evaluation of the method with EEG-fMRI data analysis showed hemodynamic maps related to the majority of IED classes representing improved performance than the visual IED classification-based analysis (72% versus 50%). Furthermore, the IED-related BOLD changes revealed by using the algorithm were localized within the presumed IZ for a larger number of IED classes (9) in a greater number of patients than the expert classification (7 and 5, respectively). In contrast, in only one case presented the new algorithm resulted in fewer classes and activation areas. We propose that the use of automated spike sorting algorithms to classify IED provides an efficient tool for mapping IED-related fMRI changes and increases the EEG-fMRI clinical value for the pre-surgical assessment of patients with severe epilepsy.
头皮脑电图记录以及癫痫患者发作间期癫痫样放电(IED)的分类,为癫痫发作起源网络提供了有价值的信息,特别是通过界定“刺激区”(IZ)的边界,因此在严重难治性癫痫患者的术前评估中很有帮助。目前癫痫样信号的检测和分类主要依赖专家观察。这是一个非常耗时的过程,还会导致观察者之间的差异。在此,我们提出一种自动分类癫痫活动的新方法,并展示该方法如何提供与IZ定位相关的关键且可靠的信息,超越了以往方法所提供的信息。我们应用Wave_clus(一种自动尖峰分类算法),对8例难治性局灶性癫痫手术候选患者术前同步脑电图 - 功能磁共振成像(EEG - fMRI)记录中视觉识别出的IED进行分类。对于每位患者,进行了两次功能磁共振成像分析:一次基于视觉分类,另一次基于算法分类。这种新方法成功识别出总共29个IED类别(相比之下,视觉识别为26个)。两种方法之间的总体一致性良好,在2例中脑电图模式完全匹配,在另外2例中提供了额外的脑电图信息,总体而言,8例中的7例覆盖了与专家分类相同区域的脑电图模式。最值得注意的是,用EEG - fMRI数据分析评估该方法时,与大多数IED类别相关的血流动力学图谱显示,其性能优于基于视觉IED分类的分析(分别为72%对50%)。此外,使用该算法揭示的与IED相关的BOLD变化,在更多患者中,比专家分类在更多数量的IED类别(分别为9个和7个、5个)中定位在假定的IZ内。相比之下,仅在1例中,新算法导致的类别和激活区域更少。我们认为,使用自动尖峰分类算法对IED进行分类,为绘制与IED相关的功能磁共振成像变化提供了一种有效的工具,并增加了EEG - fMRI在严重癫痫患者术前评估中的临床价值。