Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, United Kingdom; MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom.
Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom; Sensium Healthcare, Milton Park, Abingdon, Oxfordshire, United Kingdom.
Neuroimage. 2019 Jan 1;184:981-992. doi: 10.1016/j.neuroimage.2018.09.065. Epub 2018 Oct 10.
Simultaneous intracranial EEG and functional MRI (icEEG-fMRI) can be used to map the haemodynamic (BOLD) changes associated with the generation of IEDs. Unlike scalp EEG-fMRI, in most patients who undergo icEEG-fMRI, IEDs recorded intracranially are numerous and show variability in terms of field amplitude and morphology. Therefore, visual marking can be highly subjective and time consuming. In this study, we applied an automated spike classification algorithm, Wave_clus (WC), to IEDs marked visually on icEEG data acquired during simultaneous fMRI acquisition. The motivation of this work is to determine whether using a potentially more consistent and unbiased automated approach can produce more biologically meaningful BOLD patterns compared to the BOLD patterns obtained based on the conventional, visual classification.
We analysed simultaneous icEEG-fMRI data from eight patients with severe drug resistant epilepsy, and who subsequently underwent resective surgery that resulted in a good outcome: confirmed epileptogenic zone (EZ). For each patient two fMRI analyses were performed: one based on the conventional visual IED classification and the other based on the automated classification. We used the concordance of the IED-related BOLD maps with the confirmed EZ as an indication of their biological meaning, which we compared for the automated and visual classifications for all IED originating in the EZ.
Across the group, the visual and automated classifications resulted in 32 and 24 EZ IED classes respectively, for which 75% vs 83% of the corresponding BOLD maps were concordant. At the single-subject level, the BOLD maps for the automated approach had greater concordance in four patients, and less concordance in one patient, compared to those obtained using the conventional visual classification, and equal concordance for three remaining patients. These differences did not reach statistical significance.
We found automated IED classification on icEEG data recorded during fMRI to be feasible and to result in IED-related BOLD maps that may contain similar or greater biological meaning compared to the conventional approach in the majority of the cases studied. We anticipate that this approach will help to gain significant new insights into the brain networks associated with IEDs and in relation to postsurgical outcome.
颅内脑电图(icEEG)和功能磁共振成像(fMRI)的同步可用于绘制与癫痫发作相关的血流动力学(BOLD)变化。与头皮 EEG-fMRI 不同,在大多数接受 icEEG-fMRI 的患者中,颅内记录的癫痫发作数量众多,且在电场幅度和形态方面存在差异。因此,视觉标记可能具有高度主观性和耗时性。在这项研究中,我们应用了一种自动尖峰分类算法,Wave_clus(WC),对同步 fMRI 采集期间在 icEEG 数据上进行视觉标记的癫痫发作进行分类。这项工作的动机是确定使用一种潜在更一致和无偏的自动方法是否可以产生比基于传统视觉分类获得的更有生物学意义的 BOLD 模式。
我们分析了 8 例严重药物难治性癫痫患者的同步 icEEG-fMRI 数据,这些患者随后接受了导致良好结果的切除术:确认的致痫区(EZ)。对每位患者进行了两次 fMRI 分析:一次基于传统的视觉癫痫发作分类,另一次基于自动分类。我们使用与确认的 EZ 相关的 BOLD 图的一致性作为其生物学意义的指标,并将其与所有起源于 EZ 的癫痫发作的自动和视觉分类进行比较。
在整个组中,视觉和自动分类分别产生了 32 个和 24 个 EZ 癫痫发作分类,其中 75%和 83%的相应 BOLD 图是一致的。在个体水平上,与使用传统视觉分类相比,自动方法的 BOLD 图在 4 例患者中具有更高的一致性,在 1 例患者中具有更低的一致性,在另外 3 例患者中具有相同的一致性。这些差异没有达到统计学意义。
我们发现,在 fMRI 期间记录的 icEEG 数据上进行自动癫痫发作分类是可行的,并且与传统方法相比,在大多数研究病例中,可能会产生具有相似或更大生物学意义的癫痫发作相关的 BOLD 图。我们预计,这种方法将有助于深入了解与癫痫发作相关的大脑网络,并与术后结果相关。