Etienne Stephanie, Guthrie Martin, Goillandeau Michel, Nguyen Tho Hai, Orignac Hugues, Gross Christian, Boraud Thomas
University of Bordeaux, Institut des Maladies Neurodegeneratives UMR 5293, Bordeaux, France.
University of Bordeaux, Institut des Maladies Neurodegeneratives UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodegeneratives UMR 5293, Bordeaux, France.
PLoS One. 2014 May 15;9(5):e96275. doi: 10.1371/journal.pone.0096275. eCollection 2014.
The neurological bases of spatial navigation are mainly investigated in rodents and seldom in primates. The few studies led on spatial navigation in both human and non-human primates are performed in virtual, not in real environments. This is mostly because of methodological difficulties inherent in conducting research on freely-moving monkeys in real world environments. There is some incertitude, however, regarding the extrapolation of rodent spatial navigation strategies to primates. Here we present an entirely new platform for investigating real spatial navigation in rhesus monkeys. We showed that monkeys can learn a pathway by using different strategies. In these experiments three monkeys learned to drive the wheelchair and to follow a specified route through a real maze. After learning the route, probe tests revealed that animals successively use three distinct navigation strategies based on i) the place of the reward, ii) the direction taken to obtain reward or iii) a cue indicating reward location. The strategy used depended of the options proposed and the duration of learning. This study reveals that monkeys, like rodents and humans, switch between different spatial navigation strategies with extended practice, implying well-conserved brain learning systems across different species. This new task with freely driving monkeys provides a good support for the electrophysiological and pharmacological investigation of spatial navigation in the real world by making possible electrophysiological and pharmacological investigations.
空间导航的神经学基础主要是在啮齿动物中进行研究,而在灵长类动物中的研究很少。在人类和非人类灵长类动物中进行的少数关于空间导航的研究是在虚拟环境而非真实环境中进行的。这主要是因为在现实世界环境中对自由活动的猴子进行研究存在固有的方法学困难。然而,关于将啮齿动物的空间导航策略外推到灵长类动物存在一些不确定性。在此,我们提出了一个全新的平台来研究恒河猴的真实空间导航。我们发现猴子可以通过使用不同的策略来学习一条路径。在这些实验中,三只猴子学会了驾驶轮椅并沿着一条指定路线穿越一个真实的迷宫。在学习了路线之后,探测测试表明,动物们相继使用了三种不同的导航策略,分别基于:i)奖励的位置;ii)获取奖励所采取的方向;iii)指示奖励位置的线索。所使用的策略取决于所提供的选项和学习的持续时间。这项研究表明,猴子与啮齿动物和人类一样,通过长期练习会在不同的空间导航策略之间切换,这意味着不同物种之间存在保守的大脑学习系统。这项让猴子自由驾驶的新任务通过使电生理和药理学研究成为可能,为在现实世界中对空间导航进行电生理和药理学研究提供了良好的支持。