Menendez-Bravo Simón, Comba Santiago, Sabatini Martín, Arabolaza Ana, Gramajo Hugo
Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional deInvestigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000 Rosario, Argentina.
Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional deInvestigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000 Rosario, Argentina.
Metab Eng. 2014 Jul;24:97-106. doi: 10.1016/j.ymben.2014.05.002. Epub 2014 May 14.
Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate.
微生物脂肪酸(FA)衍生分子已成为减少对化石碳氢化合物依赖的石油基化学品的有前途的替代品。然而,天然的FA生物合成途径通常只能产生有限的结构多样性,因此最终产物的物理化学性质也受到限制,因为它只能提供有限种类的通常为线性的碳氢化合物。在这里,我们将来自结核分枝杆菌的基于霉菌酸聚酮合酶的生物合成途径导入大肠杆菌,并重新定义了其在生产具有新型化学结构的多甲基支链酯(MBE)方面的生物学作用。FadD28、Mas和PapA5酶的表达使得多甲基支链脂肪酸得以生物合成,并进一步酯化为醇。这些酶对不同的脂肪酸和醇部分具有高底物耐受性,从而导致了广泛的MBE的生物合成。对MBE生产菌株的进一步代谢工程改造将该系统与长链醇生物合成途径相结合,仅添加丙酸盐后就实现了支链蜡酯的从头生产。