van Aggelen Helen, Yang Yang, Yang Weitao
Department of Inorganic and Physical Chemistry, Ghent University, Ghent, Belgium.
Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
J Chem Phys. 2014 May 14;140(18):18A511. doi: 10.1063/1.4865816.
Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H2, and eliminates delocalization errors in H2(+) and other single-bond systems. It gives surprisingly good non-bonded interaction energies--competitive with the ph-RPA--with the correct R(-6) asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.
尽管常用的局域、半局域和混合密度泛函在许多应用中取得了无与伦比的成功,但在描述长程相互作用、静态关联和电子离域时仍面临挑战。占据轨道和虚拟轨道的密度泛函都能够解决这些问题。粒子-空穴(ph-)随机相位近似(RPA),一种占据轨道和虚拟轨道的泛函,最近在密度泛函理论界重新受到关注。基于我们最近通讯[H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)]中提出的一个想法,我们根据由粒子-粒子(pp-)传播子描述的配对矩阵涨落,为关联能制定了更一般的绝热连接。通过pp-RPA(pp-传播子的最低阶近似)的数值例子,我们展示了基于配对矩阵涨落的密度泛函近似的潜力。pp-RPA具有尺寸扩展性、无自相互作用、完全反对称,描述了H₂中的强静态关联极限,并消除了H₂⁺和其他单键系统中的离域误差。它给出了令人惊讶的良好非键相互作用能——与ph-RPA相当——具有作为分离R函数的正确R⁻⁶渐近衰减,我们认为这主要归因于其正确的二阶能量项。虽然pp-RPA往往低估绝对关联能,但它给出了良好的相对能量:比ph-RPA有更好的原子化能,因为它没有欠结合的趋势,并且反应能质量相似。基于配对矩阵涨落的绝热连接为有前景的新密度泛函近似铺平了道路。