使用碳纳米管纱线微电极对多巴胺进行高时间分辨率测量。
High temporal resolution measurements of dopamine with carbon nanotube yarn microelectrodes.
作者信息
Jacobs Christopher B, Ivanov Ilia N, Nguyen Michael D, Zestos Alexander G, Venton B Jill
机构信息
Department of Chemistry, University of Virginia , McCormick Road, Box 400319, Charlottesville, Virginia 22904-4319, United States.
出版信息
Anal Chem. 2014 Jun 17;86(12):5721-7. doi: 10.1021/ac404050t. Epub 2014 May 28.
Fast-scan cyclic voltammetry (FSCV) can detect small changes in dopamine concentration; however, measurements are typically limited to scan repetition frequencies of 10 Hz. Dopamine oxidation at carbon-fiber microelectrodes (CFMEs) is dependent on dopamine adsorption, and increasing the frequency of FSCV scan repetitions decreases the oxidation current, because the time for adsorption is decreased. Using a commercially available carbon nanotube yarn, we characterized carbon nanotube yarn microelectrodes (CNTYMEs) for high-speed measurements with FSCV. For dopamine, CNTYMEs have a significantly lower ΔEp than CFMEs, a limit of detection of 10 ± 0.8 nM, and a linear response to 25 μM. Unlike CFMEs, the oxidation current of dopamine at CNTYMEs is independent of scan repetition frequency. At a scan rate of 2000 V/s, dopamine can be detected, without any loss in sensitivity, with scan frequencies up to 500 Hz, resulting in a temporal response that is four times faster than CFMEs. While the oxidation current is adsorption-controlled at both CFMEs and CNTYMEs, the adsorption and desorption kinetics differ. The desorption coefficient of dopamine-o-quinone (DOQ), the oxidation product of dopamine, is an order of magnitude larger than that of dopamine at CFMEs; thus, DOQ desorbs from the electrode and can diffuse away. At CNTYMEs, the rates of desorption for dopamine and dopamine-o-quinone are about equal, resulting in current that is independent of scan repetition frequency. Thus, there is no compromise with CNTYMEs: high sensitivity, high sampling frequency, and high temporal resolution can be achieved simultaneously. Therefore, CNTYMEs are attractive for high-speed applications.
快速扫描循环伏安法(FSCV)能够检测多巴胺浓度的微小变化;然而,测量通常限于10Hz的扫描重复频率。碳纤维微电极(CFME)上多巴胺的氧化取决于多巴胺的吸附,并且增加FSCV扫描重复频率会降低氧化电流,因为吸附时间减少了。我们使用市售的碳纳米管纱线,对用于FSCV高速测量的碳纳米管纱线微电极(CNTYME)进行了表征。对于多巴胺,CNTYME的ΔEp明显低于CFME,检测限为10±0.8 nM,对25μM呈线性响应。与CFME不同,CNTYME上多巴胺的氧化电流与扫描重复频率无关。在2000V/s的扫描速率下,多巴胺能够在高达500Hz的扫描频率下被检测到,且灵敏度没有任何损失,产生的时间响应比CFME快四倍。虽然CFME和CNTYME上的氧化电流均受吸附控制,但吸附和解吸动力学不同。多巴胺的氧化产物多巴胺邻醌(DOQ)的解吸系数比CFME上多巴胺的解吸系数大一个数量级;因此,DOQ从电极上解吸并可以扩散离开。在CNTYME上,多巴胺和多巴胺邻醌的解吸速率大致相等,导致电流与扫描重复频率无关。因此,CNTYME不存在折衷问题:可以同时实现高灵敏度、高采样频率和高时间分辨率。所以,CNTYME对于高速应用具有吸引力。
相似文献
引用本文的文献
ACS Electrochem. 2025-3-27
Sensors (Basel). 2024-3-15
Biosensors (Basel). 2024-3-7
ECS Sens Plus. 2023-12-1
ACS Appl Nano Mater. 2022-2-25
Anal Chim Acta. 2022-8-29
本文引用的文献
Materials (Basel). 2011-8-29
ACS Chem Neurosci. 2012-4-18
Chem Rec. 2011-12-6
IEEE Trans Neural Syst Rehabil Eng. 2011-8-22