Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA.
J Neurochem. 2014 Sep;130(6):839-53. doi: 10.1111/jnc.12763. Epub 2014 Jun 19.
The oxidation of a key cysteine residue (Cys106) in the parkinsonism-associated protein DJ-1 regulates its ability to protect against oxidative stress and mitochondrial damage. Cys106 interacts with a neighboring protonated Glu18 residue, stabilizing the Cys106-SO2 (-) (sulfinic acid) form of DJ-1. To study this important post-translational modification, we previously designed several Glu18 mutations (E18N, E18D, E18Q) that alter the oxidative propensity of Cys106. However, recent results suggest these Glu18 mutations cause loss of DJ-1 dimerization, which would severely compromise the protein's function. The purpose of this study was to conclusively determine the oligomerization state of these mutants using X-ray crystallography, NMR spectroscopy, thermal stability analysis, circular dichroism spectroscopy, sedimentation equilibrium ultracentrifugation, and cross-linking. We found that all of the Glu18 DJ-1 mutants were dimeric. Thiol cross-linking indicates that these mutant dimers are more flexible than the wild-type protein and can form multiple cross-linked dimeric species due to the transient exposure of cysteine residues that are inaccessible in the wild-type protein. The enhanced flexibility of Glu18 DJ-1 mutants provides a parsimonious explanation for their lower observed cross-linking efficiency in cells. In addition, thiol cross-linkers may have an underappreciated value as qualitative probes of protein conformational flexibility. DJ-1 is a homodimeric protein that protects cells against oxidative stress. Designed mutations that influence the regulatory oxidation of a key cysteine residue have recently been proposed to disrupt DJ-1 dimerization. We use cysteine cross-linking and various biophysical techniques to show that these DJ-1 mutants form dimers with increased conformational flexibility.
帕金森病相关蛋白 DJ-1 中一个关键半胱氨酸残基(Cys106)的氧化调节其抵抗氧化应激和线粒体损伤的能力。Cys106 与相邻的质子化 Glu18 残基相互作用,稳定 DJ-1 的 Cys106-SO2 (-)(亚磺酸)形式。为了研究这种重要的翻译后修饰,我们之前设计了几种改变 Cys106 氧化倾向的 Glu18 突变(E18N、E18D、E18Q)。然而,最近的结果表明,这些 Glu18 突变导致 DJ-1 二聚体的丧失,这将严重损害蛋白质的功能。本研究的目的是使用 X 射线晶体学、NMR 光谱学、热稳定性分析、圆二色性光谱学、沉降平衡超速离心和交联来明确确定这些突变体的寡聚状态。我们发现所有的 Glu18 DJ-1 突变体都是二聚体。硫醇交联表明,这些突变体二聚体比野生型蛋白更具柔韧性,并且由于半胱氨酸残基的瞬时暴露,这些残基在野生型蛋白中无法接近,因此可以形成多种交联的二聚体。Glu18 DJ-1 突变体的增强柔韧性为它们在细胞中观察到的较低交联效率提供了一个简约的解释。此外,硫醇交联剂可能作为蛋白质构象灵活性的定性探针具有未被充分认识的价值。DJ-1 是一种具有保护细胞免受氧化应激的同源二聚体蛋白。最近提出的影响关键半胱氨酸残基调节氧化的设计突变,据推测会破坏 DJ-1 二聚体。我们使用半胱氨酸交联和各种生物物理技术表明,这些 DJ-1 突变体形成具有增加构象灵活性的二聚体。