Suppr超能文献

使用半胱氨酸反应性交联剂探测人 DJ-1 的构象灵活性表明,Glu18 突变是二聚体。

Use of cysteine-reactive cross-linkers to probe conformational flexibility of human DJ-1 demonstrates that Glu18 mutations are dimers.

机构信息

Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA.

出版信息

J Neurochem. 2014 Sep;130(6):839-53. doi: 10.1111/jnc.12763. Epub 2014 Jun 19.

Abstract

The oxidation of a key cysteine residue (Cys106) in the parkinsonism-associated protein DJ-1 regulates its ability to protect against oxidative stress and mitochondrial damage. Cys106 interacts with a neighboring protonated Glu18 residue, stabilizing the Cys106-SO2 (-) (sulfinic acid) form of DJ-1. To study this important post-translational modification, we previously designed several Glu18 mutations (E18N, E18D, E18Q) that alter the oxidative propensity of Cys106. However, recent results suggest these Glu18 mutations cause loss of DJ-1 dimerization, which would severely compromise the protein's function. The purpose of this study was to conclusively determine the oligomerization state of these mutants using X-ray crystallography, NMR spectroscopy, thermal stability analysis, circular dichroism spectroscopy, sedimentation equilibrium ultracentrifugation, and cross-linking. We found that all of the Glu18 DJ-1 mutants were dimeric. Thiol cross-linking indicates that these mutant dimers are more flexible than the wild-type protein and can form multiple cross-linked dimeric species due to the transient exposure of cysteine residues that are inaccessible in the wild-type protein. The enhanced flexibility of Glu18 DJ-1 mutants provides a parsimonious explanation for their lower observed cross-linking efficiency in cells. In addition, thiol cross-linkers may have an underappreciated value as qualitative probes of protein conformational flexibility. DJ-1 is a homodimeric protein that protects cells against oxidative stress. Designed mutations that influence the regulatory oxidation of a key cysteine residue have recently been proposed to disrupt DJ-1 dimerization. We use cysteine cross-linking and various biophysical techniques to show that these DJ-1 mutants form dimers with increased conformational flexibility.

摘要

帕金森病相关蛋白 DJ-1 中一个关键半胱氨酸残基(Cys106)的氧化调节其抵抗氧化应激和线粒体损伤的能力。Cys106 与相邻的质子化 Glu18 残基相互作用,稳定 DJ-1 的 Cys106-SO2 (-)(亚磺酸)形式。为了研究这种重要的翻译后修饰,我们之前设计了几种改变 Cys106 氧化倾向的 Glu18 突变(E18N、E18D、E18Q)。然而,最近的结果表明,这些 Glu18 突变导致 DJ-1 二聚体的丧失,这将严重损害蛋白质的功能。本研究的目的是使用 X 射线晶体学、NMR 光谱学、热稳定性分析、圆二色性光谱学、沉降平衡超速离心和交联来明确确定这些突变体的寡聚状态。我们发现所有的 Glu18 DJ-1 突变体都是二聚体。硫醇交联表明,这些突变体二聚体比野生型蛋白更具柔韧性,并且由于半胱氨酸残基的瞬时暴露,这些残基在野生型蛋白中无法接近,因此可以形成多种交联的二聚体。Glu18 DJ-1 突变体的增强柔韧性为它们在细胞中观察到的较低交联效率提供了一个简约的解释。此外,硫醇交联剂可能作为蛋白质构象灵活性的定性探针具有未被充分认识的价值。DJ-1 是一种具有保护细胞免受氧化应激的同源二聚体蛋白。最近提出的影响关键半胱氨酸残基调节氧化的设计突变,据推测会破坏 DJ-1 二聚体。我们使用半胱氨酸交联和各种生物物理技术表明,这些 DJ-1 突变体形成具有增加构象灵活性的二聚体。

相似文献

2
Formation of a stabilized cysteine sulfinic acid is critical for the mitochondrial function of the parkinsonism protein DJ-1.
J Biol Chem. 2009 Mar 6;284(10):6476-85. doi: 10.1074/jbc.M806599200. Epub 2009 Jan 5.
3
Conservation of oxidative protein stabilization in an insect homologue of parkinsonism-associated protein DJ-1.
Biochemistry. 2012 May 8;51(18):3799-807. doi: 10.1021/bi3003296. Epub 2012 Apr 24.
4
Roles of distinct cysteine residues in S-nitrosylation and dimerization of DJ-1.
Biochem Biophys Res Commun. 2006 Jan 13;339(2):667-72. doi: 10.1016/j.bbrc.2005.11.058. Epub 2005 Nov 18.
5
Effect of single amino acid substitution on oxidative modifications of the Parkinson's disease-related protein, DJ-1.
Mol Cell Proteomics. 2012 Feb;11(2):M111.010892. doi: 10.1074/mcp.M111.010892. Epub 2011 Nov 21.
6
Cysteine pKa depression by a protonated glutamic acid in human DJ-1.
Biochemistry. 2008 Jul 15;47(28):7430-40. doi: 10.1021/bi800282d. Epub 2008 Jun 21.
7
The role of cysteine oxidation in DJ-1 function and dysfunction.
Antioxid Redox Signal. 2011 Jul 1;15(1):111-22. doi: 10.1089/ars.2010.3481. Epub 2011 Jan 14.
8
Identification of an artificial peptide motif that binds and stabilizes reduced human DJ-1.
J Struct Biol. 2011 Dec;176(3):414-8. doi: 10.1016/j.jsb.2011.08.011. Epub 2011 Aug 27.
9
Destabilization of DJ-1 by familial substitution and oxidative modifications: implications for Parkinson's disease.
Biochemistry. 2007 May 15;46(19):5776-89. doi: 10.1021/bi7001778. Epub 2007 Apr 24.
10
Structural features of human DJ-1 in distinct Cys106 oxidative states and their relevance to its loss of function in disease.
Biochim Biophys Acta Gen Subj. 2017 Nov;1861(11 Pt A):2619-2629. doi: 10.1016/j.bbagen.2017.08.017. Epub 2017 Aug 24.

引用本文的文献

1
The reaction mechanism for glycolysis side product degradation by Parkinson's disease-linked DJ-1.
J Cell Biol. 2025 Aug 4;224(8). doi: 10.1083/jcb.202411078. Epub 2025 Jun 4.
2
Empowering canonical biochemicals with cross-linked novelty: Recursions in applications of protein cross-links.
Proteins. 2025 Jan;93(1):11-25. doi: 10.1002/prot.26571. Epub 2023 Aug 17.
3
The reversible low-temperature instability of human DJ-1 oxidative states.
Biopolymers. 2024 Jan;115(1):e23534. doi: 10.1002/bip.23534. Epub 2023 Mar 27.
5
The effect of cysteine oxidation on DJ-1 cytoprotective function in human alveolar type II cells.
Cell Death Dis. 2019 Sep 2;10(9):638. doi: 10.1038/s41419-019-1833-5.
6
Hexokinases link DJ-1 to the PINK1/parkin pathway.
Mol Neurodegener. 2017 Sep 29;12(1):70. doi: 10.1186/s13024-017-0212-x.
7
Complementary Benzophenone Cross-Linking/Mass Spectrometry Photochemistry.
Anal Chem. 2017 May 16;89(10):5319-5324. doi: 10.1021/acs.analchem.6b04938. Epub 2017 May 4.
8
Short Carboxylic Acid-Carboxylate Hydrogen Bonds Can Have Fully Localized Protons.
Biochemistry. 2017 Jan 17;56(2):391-402. doi: 10.1021/acs.biochem.6b00906. Epub 2016 Dec 30.
9
The Effects of Variants in the Parkin, PINK1, and DJ-1 Genes along with Evidence for their Pathogenicity.
Curr Protein Pept Sci. 2017;18(7):702-714. doi: 10.2174/1389203717666160311121954.
10
Regulation of DJ-1 by Glutaredoxin 1 in Vivo: Implications for Parkinson's Disease.
Biochemistry. 2016 Aug 16;55(32):4519-32. doi: 10.1021/acs.biochem.5b01132. Epub 2016 Aug 1.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
The oxidation states of DJ-1 dictate the cell fate in response to oxidative stress triggered by 4-hpr: autophagy or apoptosis?
Antioxid Redox Signal. 2014 Oct 1;21(10):1443-59. doi: 10.1089/ars.2013.5446. Epub 2014 Feb 19.
3
DJ-1-dependent regulation of oxidative stress in the retinal pigment epithelium (RPE).
PLoS One. 2013 Jul 2;8(7):e67983. doi: 10.1371/journal.pone.0067983. Print 2013.
4
Parkinson-susceptibility gene DJ-1/PARK7 protects the murine heart from oxidative damage in vivo.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6085-90. doi: 10.1073/pnas.1303444110. Epub 2013 Mar 25.
5
Monomer DJ-1 and its N-terminal sequence are necessary for mitochondrial localization of DJ-1 mutants.
PLoS One. 2013;8(1):e54087. doi: 10.1371/journal.pone.0054087. Epub 2013 Jan 10.
6
Parkinson's disease-associated mutations in DJ-1 modulate its dimerization in living cells.
J Mol Med (Berl). 2013 May;91(5):599-611. doi: 10.1007/s00109-012-0976-y. Epub 2012 Nov 27.
7
Oxidized DJ-1 inhibits p53 by sequestering p53 from promoters in a DNA-binding affinity-dependent manner.
Mol Cell Biol. 2013 Jan;33(2):340-59. doi: 10.1128/MCB.01350-12. Epub 2012 Nov 12.
8
Mitochondrial dysfunction and oxidative stress in Parkinson's disease and monogenic parkinsonism.
Neurobiol Dis. 2013 Mar;51:35-42. doi: 10.1016/j.nbd.2012.10.011. Epub 2012 Oct 12.
9
dj-1β regulates oxidative stress, insulin-like signaling and development in Drosophila melanogaster.
Cell Cycle. 2012 Oct 15;11(20):3876-86. doi: 10.4161/cc.22073. Epub 2012 Sep 14.
10
Mitophagy and Parkinson's disease: be eaten to stay healthy.
Mol Cell Neurosci. 2013 Jul;55:37-43. doi: 10.1016/j.mcn.2012.07.008. Epub 2012 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验