Suppr超能文献

海胆受精后蛋白质合成调控的模型表明需要两个过程:eIF4E:4E-BP 复合物的不稳定和 4E-BP 降解机制的强烈刺激,这两者都对雷帕霉素敏感。

Modelization of the regulation of protein synthesis following fertilization in sea urchin shows requirement of two processes: a destabilization of eIF4E:4E-BP complex and a great stimulation of the 4E-BP-degradation mechanism, both rapamycin-sensitive.

机构信息

Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France.

Université de Nice-Sophia Antipolis, UMR 7271, Laboratoire I3S Sophia, Antipolis, France.

出版信息

Front Genet. 2014 May 6;5:117. doi: 10.3389/fgene.2014.00117. eCollection 2014.

Abstract

Fertilization of sea urchin eggs involves an increase in protein synthesis associated with a decrease in the amount of the translation initiation inhibitor 4E-BP. A highly simple reaction model for the regulation of protein synthesis was built and was used to simulate the physiological changes in the total 4E-BP amount observed during time after fertilization. Our study evidenced that two changes occurring at fertilization are necessary to fit with experimental data. The first change was an 8-fold increase in the dissociation parameter (koff1) of the eIF4E:4E-BP complex. The second was an important 32.5-fold activation of the degradation mechanism of the protein 4E-BP. Additionally, the changes in both processes should occur in 5 min time interval post-fertilization. To validate the model, we checked that the kinetic of the predicted 4.2-fold increase of eIF4E:eIF4G complex concentration at fertilization matched the increase of protein synthesis experimentally observed after fertilization (6.6-fold, SD = 2.3, n = 8). The minimal model was also used to simulate changes observed after fertilization in the presence of rapamycin, a FRAP/mTOR inhibitor. The model showed that the eIF4E:4E-BP complex destabilization was impacted and surprisingly, that the mechanism of 4E-BP degradation was also strongly affected, therefore suggesting that both processes are controlled by the protein kinase FRAP/mTOR.

摘要

海胆卵的受精涉及与翻译起始抑制剂 4E-BP 减少相关的蛋白质合成增加。构建了一个高度简单的蛋白质合成调控反应模型,并用于模拟受精后时间内观察到的总 4E-BP 量的生理变化。我们的研究表明,受精时发生的两个变化是与实验数据拟合所必需的。第一个变化是 eIF4E:4E-BP 复合物的解离参数(koff1)增加了 8 倍。第二个是蛋白质 4E-BP 的降解机制的重要 32.5 倍激活。此外,这两个过程的变化都应该在受精后 5 分钟的时间间隔内发生。为了验证模型,我们检查了在受精时预测的 eIF4E:eIF4G 复合物浓度增加 4.2 倍的动力学是否与受精后观察到的蛋白质合成增加(6.6 倍,SD=2.3,n=8)相匹配。最小模型还用于模拟雷帕霉素(FRAP/mTOR 抑制剂)存在下受精后观察到的变化。该模型表明,eIF4E:4E-BP 复合物的不稳定性受到影响,令人惊讶的是,4E-BP 降解的机制也受到强烈影响,因此表明这两个过程都受 FRAP/mTOR 蛋白激酶的控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验