Suppr超能文献

热球菌属 Thermococcus 的色氨酸合酶β亚基 paralogs TrpB1 和 TrpB2 都参与色氨酸生物合成和吲哚回收。

The tryptophan synthase β-subunit paralogs TrpB1 and TrpB2 in Thermococcus kodakarensis are both involved in tryptophan biosynthesis and indole salvage.

机构信息

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Japan.

出版信息

FEBS J. 2014 Jul;281(14):3113-25. doi: 10.1111/febs.12845. Epub 2014 Jun 10.

Abstract

The last two steps of l-tryptophan (Trp) biosynthesis are catalyzed by Trp synthase, a heterotetramer composed of TrpA and TrpB. TrpB catalyzes the condensation of indole, synthesized by TrpA, and serine to Trp. In the hyperthermophilic archaeon Thermococcus kodakarensis, trpA and trpB (trpB1) are located adjacently in the trpCDEGFB1A operon. Interestingly, several organisms possess a second trpB gene (trpB2) encoding TrpB2, located outside of the trp operon in T. kodakarensis. Until now, the physiological function of trpB2 has not been examined genetically. In the present study, we report the biochemical and physiological analyses of TrpB2 from T. kodakarensis. Kinetic analysis indicated that TrpB2 catalyzed the TrpB reaction but did not interact with TrpA as in the case of TrpB1. When growth phenotypes were examined for gene disruption strains, the double-deletion mutant (ΔtrpB1ΔtrpB2) displayed Trp auxotrophy, whereas individual single mutants (ΔtrpB1 and ΔtrpB2 strains) did not. It has been proposed previously that, in Thermotoga maritima, TrpB2 provides an alternate route to generate Trp from serine and free indole (indole salvage). To accurately examine the capacity of TrpB1 and TrpB2 in Trp synthesis via indole salvage, we constructed ΔtrpEB1 and ΔtrpEB2 strains using strain KUW1 (ΔpyrFΔtrpE) as a host, eliminating the route for endogenous indole synthesis. Indole complemented the Trp auxotrophies of ΔtrpEB1 (ΔpyrFΔtrpEΔtrpB1) and ΔtrpEB2 (ΔpyrFΔtrpEΔtrpB2) to similar levels. The results indicate that TrpB1 and TrpB2 both contribute to Trp biosynthesis in T. kodakarensis and can utilize free indole, and that indole salvage does not necessarily rely on TrpB2 to a greater extent.

摘要

色氨酸(Trp)生物合成的最后两步由 Trp 合酶催化,Trp 合酶是由 TrpA 和 TrpB 组成的杂四聚体。TrpB 催化吲哚和丝氨酸缩合生成 Trp,吲哚由 TrpA 合成。在嗜热古菌 Thermococcus kodakarensis 中,trpA 和 trpB(trpB1)位于 trpCDEGFB1A 操纵子的相邻位置。有趣的是,一些生物体具有第二个 trpB 基因(trpB2),编码 TrpB2,位于 T. kodakarensis 中 trp 操纵子之外。到目前为止,trpB2 的生理功能尚未通过遗传进行检查。在本研究中,我们报告了来自 T. kodakarensis 的 TrpB2 的生化和生理分析。动力学分析表明,TrpB2 催化 TrpB 反应,但与 TrpB1 不同,它不与 TrpA 相互作用。当检查基因敲除菌株的生长表型时,双缺失突变体(ΔtrpB1ΔtrpB2)表现出色氨酸营养缺陷,而单个缺失突变体(ΔtrpB1 和 ΔtrpB2 菌株)则没有。先前已经提出,在 Thermotoga maritima 中,TrpB2 提供了一种从丝氨酸和游离吲哚(吲哚回收)生成 Trp 的替代途径。为了准确检查 TrpB1 和 TrpB2 通过吲哚回收途径合成 Trp 的能力,我们使用 KUW1 菌株(ΔpyrFΔtrpE)作为宿主构建了 ΔtrpEB1 和 ΔtrpEB2 菌株,消除了内源性吲哚合成途径。吲哚补充了 ΔtrpEB1(ΔpyrFΔtrpEΔtrpB1)和 ΔtrpEB2(ΔpyrFΔtrpEΔtrpB2)的色氨酸营养缺陷型,补充程度相似。结果表明,TrpB1 和 TrpB2 都有助于 T. kodakarensis 中的 Trp 生物合成,并且可以利用游离吲哚,并且吲哚回收不一定在更大程度上依赖于 TrpB2。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验