Tsai Albert, Kornberg Guy, Johansson Magnus, Chen Jin, Puglisi Joseph D
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305-4090, USA.
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.
Cell Rep. 2014 Jun 12;7(5):1521-1533. doi: 10.1016/j.celrep.2014.04.033. Epub 2014 May 15.
SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP) using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation.
SecM是一种大肠杆菌分泌监测蛋白,能够在没有辅助因子的情况下使原核核糖体上的翻译停滞。生化和结构研究表明,SecM新生肽链与50S亚基的出口通道相互作用,以抑制肽键形成。然而,mRNA上停滞的时间尺度和途径仍不明确。为了提供一种停滞的动态机制,我们使用单分子荧光技术直接追踪核糖体翻译SecM停滞序列(FSTPVWISQAQGIRAGP)时延伸的动态过程。在1分钟内,三种肽-核糖体相互作用在SecM序列的最后五个密码子上协同作用,导致从末端脯氨酸开始并持续四个密码子的延伸速率严重受损。我们的结果表明,停滞与延伸的动态过程紧密相关,并强调了出口通道和新生肽链在控制翻译基本步骤中所起的作用。