Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA.
Biophys J. 2012 Jul 18;103(2):331-41. doi: 10.1016/j.bpj.2012.06.005. Epub 2012 Jul 17.
Nascent-peptide modulation of translation is a common regulatory mechanism of gene expression. In this mechanism, while the nascent peptide is still in the exit tunnel of the ribosome, it induces translational pausing, thereby controlling the expression of downstream genes. One example is SecM, which inhibits peptide-bond formation in the ribosome's peptidyl transferase center (PTC) during its own translation, upregulating the expression of the protein translocase SecA. Although biochemical experiments and cryo-electron microscopy data have led to the identification of some residues involved in SecM recognition, the full pathway of interacting residues that connect SecM to the PTC through the ribosome has not yet been conclusively established. Here, using the cryo-electron microscopy data, we derived the first (to our knowledge) atomic model of the SecM-stalled ribosome via molecular-dynamics flexible fitting, complete with P- and A-site tRNAs. Subsequently, we carried out simulations of native and mutated SecM-stalled ribosomes to investigate possible interaction pathways between a critical SecM residue, R163, and the PTC. In particular, the simulations reveal the role of SecM in altering the position of the tRNAs in the ribosome, and thus demonstrate how the presence of SecM in the exit tunnel induces stalling. Finally, steered molecular-dynamics simulations in which SecM was pulled toward the tunnel exit suggest how SecA interacting with SecM from outside the ribosome relieves stalling.
新生肽对翻译的调节是基因表达的一种常见调控机制。在这个机制中,当新生肽仍在核糖体的出口隧道中时,它会诱导翻译暂停,从而控制下游基因的表达。一个例子是 SecM,它在自身翻译过程中抑制核糖体肽基转移酶中心(PTC)中的肽键形成,从而上调蛋白易位酶 SecA 的表达。尽管生化实验和冷冻电镜数据已经确定了一些参与 SecM 识别的残基,但连接 SecM 和 PTC 通过核糖体的相互作用残基的完整途径尚未得到明确确立。在这里,我们使用冷冻电镜数据,通过分子动力学柔性拟合,首次(据我们所知)构建了包含 P 和 A 位 tRNA 的 SecM 停滞核糖体的原子模型。随后,我们对天然和突变的 SecM 停滞核糖体进行了模拟,以研究关键 SecM 残基 R163 与 PTC 之间可能的相互作用途径。特别是,模拟揭示了 SecM 在改变核糖体中 tRNA 位置方面的作用,从而证明了 SecM 在出口隧道中的存在如何诱导停滞。最后,引导分子动力学模拟表明,SecA 如何从核糖体外部与 SecM 相互作用以缓解停滞。