Suppr超能文献

一种 17 基因检测方法,可在格里森分级异质性、肿瘤多灶性和活检取样不足的情况下预测前列腺癌的侵袭性。

A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling.

机构信息

Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.

Department of Urology, University of California, San Francisco and UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.

出版信息

Eur Urol. 2014 Sep;66(3):550-60. doi: 10.1016/j.eururo.2014.05.004. Epub 2014 May 16.

Abstract

BACKGROUND

Prostate tumor heterogeneity and biopsy undersampling pose challenges to accurate, individualized risk assessment for men with localized disease.

OBJECTIVE

To identify and validate a biopsy-based gene expression signature that predicts clinical recurrence, prostate cancer (PCa) death, and adverse pathology.

DESIGN, SETTING, AND PARTICIPANTS: Gene expression was quantified by reverse transcription-polymerase chain reaction for three studies-a discovery prostatectomy study (n=441), a biopsy study (n=167), and a prospectively designed, independent clinical validation study (n=395)-testing retrospectively collected needle biopsies from contemporary (1997-2011) patients with low to intermediate clinical risk who were candidates for active surveillance (AS).

OUTCOME MEASURES AND STATISTICAL ANALYSIS

The main outcome measures defining aggressive PCa were clinical recurrence, PCa death, and adverse pathology at prostatectomy. Cox proportional hazards regression models were used to evaluate the association between gene expression and time to event end points. Results from the prostatectomy and biopsy studies were used to develop and lock a multigene-expression-based signature, called the Genomic Prostate Score (GPS); in the validation study, logistic regression was used to test the association between the GPS and pathologic stage and grade at prostatectomy. Decision-curve analysis and risk profiles were used together with clinical and pathologic characteristics to evaluate clinical utility.

RESULTS AND LIMITATIONS

Of the 732 candidate genes analyzed, 288 (39%) were found to predict clinical recurrence despite heterogeneity and multifocality, and 198 (27%) were predictive of aggressive disease after adjustment for prostate-specific antigen, Gleason score, and clinical stage. Further analysis identified 17 genes representing multiple biological pathways that were combined into the GPS algorithm. In the validation study, GPS predicted high-grade (odds ratio [OR] per 20 GPS units: 2.3; 95% confidence interval [CI], 1.5-3.7; p<0.001) and high-stage (OR per 20 GPS units: 1.9; 95% CI, 1.3-3.0; p=0.003) at surgical pathology. GPS predicted high-grade and/or high-stage disease after controlling for established clinical factors (p<0.005) such as an OR of 2.1 (95% CI, 1.4-3.2) when adjusting for Cancer of the Prostate Risk Assessment score. A limitation of the validation study was the inclusion of men with low-volume intermediate-risk PCa (Gleason score 3+4), for whom some providers would not consider AS.

CONCLUSIONS

Genes representing multiple biological pathways discriminate PCa aggressiveness in biopsy tissue despite tumor heterogeneity, multifocality, and limited sampling at time of biopsy. The biopsy-based 17-gene GPS improves prediction of the presence or absence of adverse pathology and may help men with PCa make more informed decisions between AS and immediate treatment.

PATIENT SUMMARY

Prostate cancer (PCa) is often present in multiple locations within the prostate and has variable characteristics. We identified genes with expression associated with aggressive PCa to develop a biopsy-based, multigene signature, the Genomic Prostate Score (GPS). GPS was validated for its ability to predict men who have high-grade or high-stage PCa at diagnosis and may help men diagnosed with PCa decide between active surveillance and immediate definitive treatment.

摘要

背景

前列腺肿瘤异质性和活检样本不足对局部疾病男性进行准确、个体化的风险评估构成挑战。

目的

确定并验证一种基于活检的基因表达谱,以预测临床复发、前列腺癌(PCa)死亡和不良病理。

设计、地点和参与者:通过逆转录-聚合酶链反应(reverse transcription-polymerase chain reaction)对三个研究进行了基因表达定量-一个前列腺切除术研究(n=441)、一个活检研究(n=167)和一个前瞻性设计的独立临床验证研究(n=395)-测试了从当代(1997-2011 年)具有低至中度临床风险的患者中回顾性收集的经针吸活检的样本,这些患者是主动监测(AS)的候选者。

结局测量和统计分析

定义侵袭性 PCa 的主要结局测量是临床复发、PCa 死亡和前列腺切除术时的不良病理。使用 Cox 比例风险回归模型评估基因表达与时间至事件终点之间的关联。前列腺切除术和活检研究的结果用于开发和锁定一种基于多基因表达的签名,称为基因组前列腺评分(Genomic Prostate Score,GPS);在验证研究中,使用逻辑回归来检验 GPS 与前列腺切除术后病理分期和分级之间的关联。决策曲线分析和风险概况与临床和病理特征一起用于评估临床效用。

结果和局限性

在分析的 732 个候选基因中,有 288 个(39%)被发现尽管存在异质性和多灶性,但仍能预测临床复发,有 198 个(27%)在调整前列腺特异性抗原、Gleason 评分和临床分期后,可预测侵袭性疾病。进一步的分析确定了代表多种生物学途径的 17 个基因,这些基因被组合成 GPS 算法。在验证研究中,GPS 预测高级别(每 20 GPS 单位的优势比 [OR]:2.3;95%置信区间 [CI]:1.5-3.7;p<0.001)和高分期(每 20 GPS 单位的 OR:1.9;95%CI:1.3-3.0;p=0.003)的病理结果。在控制既定临床因素(如调整癌症前列腺风险评估评分时的 OR 为 2.1(95%CI,1.4-3.2))后,GPS 预测高级别和/或高级别疾病(p<0.005)。验证研究的一个局限性是纳入了低体积中危 PCa(Gleason 评分 3+4)患者,对于这些患者,一些医生不会考虑 AS。

结论

代表多种生物学途径的基因在活检组织中区分 PCa 的侵袭性,尽管存在肿瘤异质性、多灶性和活检时的有限采样。基于活检的 17 基因 GPS 提高了对不良病理存在或不存在的预测能力,可能有助于 PCa 患者在 AS 和立即治疗之间做出更明智的决策。

患者总结

前列腺癌(PCa)通常存在于前列腺的多个部位,且具有不同的特征。我们确定了与侵袭性 PCa 相关的基因表达来开发一种基于活检的多基因签名,即基因组前列腺评分(GPS)。GPS 经过验证,可用于预测男性在诊断时是否存在高级别或高分期的 PCa,这可能有助于诊断为 PCa 的男性在主动监测和立即确定性治疗之间做出决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验