Shao Qiang
Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.
J Phys Chem B. 2014 Jun 5;118(22):5891-900. doi: 10.1021/jp5043393. Epub 2014 May 23.
A comparative study on the folding of multiple three-α-helix bundle proteins including α3D, α3W, and the B domain of protein A (BdpA) is presented. The use of integrated-tempering-sampling molecular dynamics simulations achieves reversible folding and unfolding events in individual short trajectories, which thus provides an efficient approach to sufficiently sample the configuration space of protein and delineate the folding pathway of α-helix bundle. The detailed free energy landscape analyses indicate that the folding mechanism of α-helix bundle is not uniform but sequence dependent. A simple model is then proposed to predict folding mechanism of α-helix bundle on the basis of amino acid composition: α-helical proteins containing higher percentage of hydrophobic residues than charged ones fold via nucleation-condensation mechanism (e.g., α3D and BdpA) whereas proteins having opposite tendency in amino acid composition more likely fold via the framework mechanism (e.g., α3W). The model is tested on various α-helix bundle proteins, and the predicted mechanism is similar to the most approved one for each protein. In addition, the common features in the folding pathway of α-helix bundle protein are also deduced. In summary, the present study provides comprehensive, atomic-level picture of the folding of α-helix bundle proteins.
本文展示了对包括α3D、α3W和蛋白A的B结构域(BdpA)在内的多种三α螺旋束蛋白折叠的比较研究。通过积分回火采样分子动力学模拟,在单个短轨迹中实现了可逆的折叠和展开事件,从而提供了一种有效方法来充分采样蛋白质的构象空间并描绘α螺旋束的折叠途径。详细的自由能景观分析表明,α螺旋束的折叠机制并非统一,而是依赖于序列。然后基于氨基酸组成提出了一个简单模型来预测α螺旋束的折叠机制:疏水残基百分比高于带电残基的α螺旋蛋白通过成核凝聚机制折叠(例如α3D和BdpA),而氨基酸组成具有相反趋势的蛋白更可能通过框架机制折叠(例如α3W)。该模型在各种α螺旋束蛋白上进行了测试,预测的机制与每种蛋白最认可的机制相似。此外,还推导了α螺旋束蛋白折叠途径中的共同特征。总之,本研究提供了α螺旋束蛋白折叠的全面原子水平图景。