Suppr超能文献

蛋白质设计:回顾

protein design, a retrospective.

机构信息

Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY13244, USA.

Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco 555 Mission Bay Blvd. South, San Francisco, CA94158, USA.

出版信息

Q Rev Biophys. 2020 Feb 11;53:e3. doi: 10.1017/S0033583519000131.

Abstract

Proteins are molecular machines whose function depends on their ability to achieve complex folds with precisely defined structural and dynamic properties. The rational design of proteins from first-principles, or de novo, was once considered to be impossible, but today proteins with a variety of folds and functions have been realized. We review the evolution of the field from its earliest days, placing particular emphasis on how this endeavor has illuminated our understanding of the principles underlying the folding and function of natural proteins, and is informing the design of macromolecules with unprecedented structures and properties. An initial set of milestones in de novo protein design focused on the construction of sequences that folded in water and membranes to adopt folded conformations. The first proteins were designed from first-principles using very simple physical models. As computers became more powerful, the use of the rotamer approximation allowed one to discover amino acid sequences that stabilize the desired fold. As the crystallographic database of protein structures expanded in subsequent years, it became possible to construct proteins by assembling short backbone fragments that frequently recur in Nature. The second set of milestones in de novo design involves the discovery of complex functions. Proteins have been designed to bind a variety of metals, porphyrins, and other cofactors. The design of proteins that catalyze hydrolysis and oxygen-dependent reactions has progressed significantly. However, de novo design of catalysts for energetically demanding reactions, or even proteins that bind with high affinity and specificity to highly functionalized complex polar molecules remains an importnant challenge that is now being achieved. Finally, the protein design contributed significantly to our understanding of membrane protein folding and transport of ions across membranes. The area of membrane protein design, or more generally of biomimetic polymers that function in mixed or non-aqueous environments, is now becoming increasingly possible.

摘要

蛋白质是分子机器,其功能取决于它们实现具有精确定义的结构和动态特性的复杂折叠的能力。从第一性原理或从头开始设计蛋白质曾经被认为是不可能的,但如今已经实现了具有各种折叠和功能的蛋白质。我们回顾了该领域从早期发展至今的历程,特别强调了这一努力如何阐明了我们对天然蛋白质折叠和功能基础原理的理解,并为具有前所未有的结构和特性的大分子设计提供了信息。从头开始设计蛋白质的最初里程碑集中在构建在水中和膜中折叠以采用折叠构象的序列上。最初的蛋白质是使用非常简单的物理模型从第一性原理设计的。随着计算机变得更加强大,使用轮烷近似法可以发现稳定所需折叠的氨基酸序列。随着蛋白质结构晶体学数据库在随后几年的扩展,通过组装在自然界中经常出现的短骨架片段来构建蛋白质成为可能。从头开始设计的第二个里程碑涉及复杂功能的发现。已经设计出了可以结合各种金属、卟啉和其他辅因子的蛋白质。水解和氧依赖性反应的催化剂的设计已经取得了显著进展。然而,设计用于高能反应的催化剂,甚至设计对高度官能化的复杂极性分子具有高亲和力和特异性的蛋白质仍然是一个重要的挑战,现在正在取得进展。最后,蛋白质设计为我们理解膜蛋白折叠和离子跨膜运输做出了重要贡献。膜蛋白设计领域,或者更一般地说,在混合或非水环境中起作用的仿生聚合物领域,现在变得越来越可行。

相似文献

1
protein design, a retrospective.
Q Rev Biophys. 2020 Feb 11;53:e3. doi: 10.1017/S0033583519000131.
2
De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
Acc Chem Res. 2019 May 21;52(5):1148-1159. doi: 10.1021/acs.accounts.8b00674. Epub 2019 Apr 11.
3
Bottom-up de novo design of functional proteins with complex structural features.
Nat Chem Biol. 2021 Apr;17(4):492-500. doi: 10.1038/s41589-020-00699-x. Epub 2021 Jan 4.
4
A generic framework for hierarchical de novo protein design.
Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2206111119. doi: 10.1073/pnas.2206111119. Epub 2022 Oct 17.
5
Rosetta FunFolDes - A general framework for the computational design of functional proteins.
PLoS Comput Biol. 2018 Nov 19;14(11):e1006623. doi: 10.1371/journal.pcbi.1006623. eCollection 2018 Nov.
6
De novo design of buttressed loops for sculpting protein functions.
Nat Chem Biol. 2024 Aug;20(8):974-980. doi: 10.1038/s41589-024-01632-2. Epub 2024 May 30.
7
Introduction of a polar core into the de novo designed protein Top7.
Protein Sci. 2016 Jul;25(7):1299-307. doi: 10.1002/pro.2899. Epub 2016 Mar 7.
8
Robust -Designed Homotetrameric Coiled Coils.
Biochemistry. 2020 Mar 17;59(10):1087-1092. doi: 10.1021/acs.biochem.0c00082. Epub 2020 Mar 9.
9
Control over overall shape and size in de novo designed proteins.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):E5478-85. doi: 10.1073/pnas.1509508112. Epub 2015 Sep 22.
10
De novo protein design by inversion of the AlphaFold structure prediction network.
Protein Sci. 2023 Jun;32(6):e4653. doi: 10.1002/pro.4653.

引用本文的文献

1
Adaptive peptide dispersions enable drying-induced biomolecule encapsulation.
Nat Mater. 2025 Aug 5. doi: 10.1038/s41563-025-02300-z.
3
A Complementarity-Based Approach to De Novo Binder Design.
Adv Sci (Weinh). 2025 Sep;12(33):e02015. doi: 10.1002/advs.202502015. Epub 2025 Jul 21.
4
designed bright, hyperstable rhodamine binders for fluorescence microscopy.
bioRxiv. 2025 Jun 25:2025.06.24.661379. doi: 10.1101/2025.06.24.661379.
5
Drug discovery and development targeting the life cycle of SARS-CoV-2.
Fundam Res. 2021 Mar;1(2):151-165. doi: 10.1016/j.fmre.2021.01.013. Epub 2021 Feb 1.
7
A De Novo Designed Metalloprotein Displays Variable Thermal Stability and Binding Stoichiometry with Transition Metal Ions.
Chembiochem. 2025 Jul 18;26(14):e202500322. doi: 10.1002/cbic.202500322. Epub 2025 Jun 27.
10
De Novo Design of Parallel and Antiparallel AB Heterohexameric α-Helical Barrels.
Biochemistry. 2025 May 6;64(9):1973-1982. doi: 10.1021/acs.biochem.4c00584. Epub 2025 Apr 14.

本文引用的文献

1
Multi-scale structural analysis of proteins by deep semantic segmentation.
Bioinformatics. 2020 Mar 1;36(6):1740-1749. doi: 10.1093/bioinformatics/btz650.
2
Ambidextrous helical nanotubes from self-assembly of designed helical hairpin motifs.
Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14456-14464. doi: 10.1073/pnas.1903910116. Epub 2019 Jul 1.
3
Virus-Inspired Function in Engineered Protein Cages.
J Am Chem Soc. 2019 Jun 19;141(24):9432-9443. doi: 10.1021/jacs.9b03705. Epub 2019 Jun 10.
4
The de novo design of α-helical peptides for supramolecular self-assembly.
Curr Opin Biotechnol. 2019 Aug;58:175-182. doi: 10.1016/j.copbio.2019.03.017. Epub 2019 Apr 28.
5
De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
Acc Chem Res. 2019 May 21;52(5):1148-1159. doi: 10.1021/acs.accounts.8b00674. Epub 2019 Apr 11.
6
Packing of apolar side chains enables accurate design of highly stable membrane proteins.
Science. 2019 Mar 29;363(6434):1418-1423. doi: 10.1126/science.aav7541.
7
Trajectory-based training enables protein simulations with accurate folding and Boltzmann ensembles in cpu-hours.
PLoS Comput Biol. 2018 Dec 27;14(12):e1006578. doi: 10.1371/journal.pcbi.1006578. eCollection 2018 Dec.
8
The aqueous environment as an active participant in the protein folding process.
J Mol Graph Model. 2019 Mar;87:227-239. doi: 10.1016/j.jmgm.2018.12.008. Epub 2018 Dec 14.
9
Programmable design of orthogonal protein heterodimers.
Nature. 2019 Jan;565(7737):106-111. doi: 10.1038/s41586-018-0802-y. Epub 2018 Dec 19.
10
Evolution of a highly active and enantiospecific metalloenzyme from short peptides.
Science. 2018 Dec 14;362(6420):1285-1288. doi: 10.1126/science.aau3744.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验