Suppr超能文献

用于提高黑莓(悬钩子属 榆叶梅肖特)挥发物固相微萃取气相色谱 - 质谱联用分析数据精度的统计分析。

Statistical analysis for improving data precision in the SPME GC-MS analysis of blackberry (Rubus ulmifolius Schott) volatiles.

作者信息

D'Agostino M F, Sanz J, Martínez-Castro I, Giuffrè A M, Sicari V, Soria A C

机构信息

Università degli Studi Mediterranea di Reggio Calabria - Dipartimento AGRARIA, Contrada Melissari, 89124 Reggio Calabria, Italy.

Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.

出版信息

Talanta. 2014 Jul;125:248-56. doi: 10.1016/j.talanta.2014.02.058. Epub 2014 Mar 2.

Abstract

Statistical analysis has been used for the first time to evaluate the dispersion of quantitative data in the solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis of blackberry (Rubus ulmifolius Schott) volatiles with the aim of improving their precision. Experimental and randomly simulated data were compared using different statistical parameters (correlation coefficients, Principal Component Analysis loadings and eigenvalues). Non-random factors were shown to significantly contribute to total dispersion; groups of volatile compounds could be associated with these factors. A significant improvement of precision was achieved when considering percent concentration ratios, rather than percent values, among those blackberry volatiles with a similar dispersion behavior. As novelty over previous references, and to complement this main objective, the presence of non-random dispersion trends in data from simple blackberry model systems was evidenced. Although the influence of the type of matrix on data precision was proved, the possibility of a better understanding of the dispersion patterns in real samples was not possible from model systems. The approach here used was validated for the first time through the multicomponent characterization of Italian blackberries from different harvest years.

摘要

首次运用统计分析来评估固相微萃取(SPME)中定量数据的离散情况,随后通过气相色谱 - 质谱联用(GC-MS)分析黑莓(悬钩子属肖特)挥发物,旨在提高其精度。使用不同的统计参数(相关系数、主成分分析载荷和特征值)对实验数据和随机模拟数据进行比较。结果表明,非随机因素对总离散有显著贡献;挥发性化合物组可能与这些因素相关。在具有相似离散行为的黑莓挥发物中,考虑浓度百分比比值而非百分比值时,精度有显著提高。作为相对于先前参考文献的新颖之处,并为补充这一主要目标,证实了简单黑莓模型系统数据中存在非随机离散趋势。尽管证明了基质类型对数据精度的影响,但从模型系统无法更好地理解实际样品中的离散模式。此处采用的方法首次通过对不同收获年份的意大利黑莓进行多组分表征得到验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验