Suppr超能文献

PqsD中邻氨基苯甲酰基转移的机制细节:HHQ生物合成的起始步骤。

Mechanistic details for anthraniloyl transfer in PqsD: the initial step in HHQ biosynthesis.

作者信息

Hutter Michael C, Brengel Christian, Negri Matthias, Henn Claudia, Zimmer Christina, Hartmann Rolf W, Empting Martin, Steinbach Anke

机构信息

Center for Bioinformatics, Saarland University, Campus Building E2.1, 66123, Saarbrücken, Germany,

出版信息

J Mol Model. 2014 Jun;20(6):2255. doi: 10.1007/s00894-014-2255-z. Epub 2014 May 15.

Abstract

PqsD mediates the conversion of anthraniloyl-coenzyme A (ACoA) to 2-heptyl-4-hydroxyquinoline (HHQ), a precursor of the Pseudomonas quinolone signal (PQS) molecule. Due to the role of the quinolone signaling pathway of Pseudomonas aeruginosa in the expression of several virulence factors and biofilm formation, PqsD is a potential target for controlling this nosocomial pathogen, which exhibits a low susceptibility to standard antibiotics. PqsD belongs to the β-ketoacyl-ACP synthase family and is similar in structure to homologous FabH enzymes in E. coli and Mycobacterium tuberculosis. Here, we used molecular dynamics simulations to obtain the structural position of the substrate ACoA in the binding pocket of PqsD, and semiempirical molecular orbital calculations to study the reaction mechanism for the catalytic cleavage of ACoA. Our findings suggest a nucleophilic attack of the deprotonated sulfur of Cys112 at the carbonyl carbon of ACoA and a switch in the protonation pattern of His257 whereby Nδ is protonated and the proton of Nε is shifted to the sulfur of CoA during the reaction. This is in agreement with the experimentally determined decreased catalytic activity of the Cys112Ser mutant, whereas the Cys112Ala, His257Phe, and Asn287Ala mutants are all inactive. ESI mass-spectrometric measurements of the Asn287Ala mutant show that anthraniloyl remains covalently bound to Cys112, thus further supporting the inference from our computed mechanism that Asn287 does not take part in the cleavage of ACoA. Since this mutant is inactive, we suggest instead that Asn287 must play an essential role in the subsequent formation of HHQ in vitro.

摘要

PqsD介导邻氨基苯甲酰辅酶A(ACoA)转化为2-庚基-4-羟基喹啉(HHQ),后者是铜绿假单胞菌喹诺酮信号(PQS)分子的前体。由于铜绿假单胞菌的喹诺酮信号通路在多种毒力因子的表达和生物膜形成中发挥作用,PqsD是控制这种医院病原体的潜在靶点,该病原体对标准抗生素敏感性较低。PqsD属于β-酮酰基-ACP合酶家族,其结构与大肠杆菌和结核分枝杆菌中的同源FabH酶相似。在此,我们使用分子动力学模拟来获取底物ACoA在PqsD结合口袋中的结构位置,并使用半经验分子轨道计算来研究ACoA催化裂解的反应机制。我们的研究结果表明,Cys112去质子化的硫对ACoA的羰基碳进行亲核攻击,并且His257的质子化模式发生转变,即反应过程中Nδ被质子化,Nε的质子转移到CoA的硫上。这与实验确定的Cys112Ser突变体催化活性降低一致,而Cys112Ala、His257Phe和Asn287Ala突变体均无活性。对Asn287Ala突变体的电喷雾电离质谱测量表明,邻氨基苯甲酰基仍然与Cys112共价结合,从而进一步支持了我们计算机制得出的Asn287不参与ACoA裂解的推断。由于该突变体无活性,我们转而认为Asn287必定在体外后续HHQ的形成中发挥重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验