Suppr超能文献

铜绿假单胞菌PqsA是一种邻氨基苯甲酸辅酶A连接酶。

Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase.

作者信息

Coleman James P, Hudson L Lynn, McKnight Susan L, Farrow John M, Calfee M Worth, Lindsey Claire A, Pesci Everett C

机构信息

Department of Microbiology and Immunology, The Brody School of Medicine at East Carolina University, 600 Moye Blvd., Greenville, North Carolina 27834, USA.

出版信息

J Bacteriol. 2008 Feb;190(4):1247-55. doi: 10.1128/JB.01140-07. Epub 2007 Dec 14.

Abstract

Pseudomonas aeruginosa is an opportunistic human pathogen which relies on several intercellular signaling systems for optimum population density-dependent regulation of virulence genes. The Pseudomonas quinolone signal (PQS) is a 3-hydroxy-4-quinolone with a 2-alkyl substitution which is synthesized by the condensation of anthranilic acid with a 3-keto-fatty acid. The pqsABCDE operon has been identified as being necessary for PQS production, and the pqsA gene encodes a predicted protein with homology to acyl coenzyme A (acyl-CoA) ligases. In order to elucidate the first step of the 4-quinolone synthesis pathway in P. aeruginosa, we have characterized the function of the pqsA gene product. Extracts prepared from Escherichia coli expressing PqsA were shown to catalyze the formation of anthraniloyl-CoA from anthranilate, ATP, and CoA. The PqsA protein was purified as a recombinant His-tagged polypeptide, and this protein was shown to have anthranilate-CoA ligase activity. The enzyme was active on a variety of aromatic substrates, including benzoate and chloro and fluoro derivatives of anthranilate. Inhibition of PQS formation in vivo was observed for the chloro- and fluoroanthranilate derivatives, as well as for several analogs which were not PqsA enzymatic substrates. These results indicate that the PqsA protein is responsible for priming anthranilate for entry into the PQS biosynthetic pathway and that this enzyme may serve as a useful in vitro indicator for potential agents to disrupt quinolone signaling in P. aeruginosa.

摘要

铜绿假单胞菌是一种机会性人类病原体,它依赖多种细胞间信号系统来实现对毒力基因的最佳群体密度依赖性调控。铜绿假单胞菌喹诺酮信号(PQS)是一种具有2-烷基取代基的3-羟基-4-喹诺酮,由邻氨基苯甲酸与3-酮脂肪酸缩合而成。pqsABCDE操纵子已被确定为PQS产生所必需的,并且pqsA基因编码一种与酰基辅酶A(酰基-CoA)连接酶具有同源性的预测蛋白。为了阐明铜绿假单胞菌中4-喹诺酮合成途径的第一步,我们对pqsA基因产物的功能进行了表征。从表达PqsA的大肠杆菌中制备的提取物被证明能催化由邻氨基苯甲酸、ATP和CoA形成邻氨基苯甲酰-CoA。PqsA蛋白被纯化成为一种重组的带有His标签的多肽,并且该蛋白被证明具有邻氨基苯甲酸-CoA连接酶活性。该酶对多种芳香族底物具有活性,包括苯甲酸以及邻氨基苯甲酸的氯代和氟代衍生物。在体内观察到氯代和氟代邻氨基苯甲酸衍生物以及几种非PqsA酶底物的类似物对PQS形成的抑制作用。这些结果表明,PqsA蛋白负责引发邻氨基苯甲酸进入PQS生物合成途径,并且这种酶可能作为一种有用的体外指标,用于筛选能够破坏铜绿假单胞菌中喹诺酮信号传导的潜在药物。

相似文献

1
Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase.
J Bacteriol. 2008 Feb;190(4):1247-55. doi: 10.1128/JB.01140-07. Epub 2007 Dec 14.
4
Growth phase-differential quorum sensing regulation of anthranilate metabolism in Pseudomonas aeruginosa.
Mol Cells. 2011 Jul;32(1):57-65. doi: 10.1007/s10059-011-2322-6. Epub 2011 May 23.
5
Synthesis of Methylated Anthranilate Derivatives Using Engineered Strains of .
J Microbiol Biotechnol. 2019 Jun 28;29(6):839-844. doi: 10.4014/jmb.1904.04022.
6
Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11633-7. doi: 10.1073/pnas.201328498.
7
The role of two Pseudomonas aeruginosa anthranilate synthases in tryptophan and quorum signal production.
Microbiology (Reading). 2013 May;159(Pt 5):959-969. doi: 10.1099/mic.0.063065-0. Epub 2013 Feb 28.
8
Designed Small-Molecule Inhibitors of the Anthranilyl-CoA Synthetase PqsA Block Quinolone Biosynthesis in Pseudomonas aeruginosa.
ACS Chem Biol. 2016 Nov 18;11(11):3061-3067. doi: 10.1021/acschembio.6b00575. Epub 2016 Sep 22.
9
Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS).
FEMS Microbiol Lett. 2004 Jan 15;230(1):27-34. doi: 10.1016/S0378-1097(03)00849-8.
10
Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal.
J Bacteriol. 2007 May;189(9):3425-33. doi: 10.1128/JB.00209-07. Epub 2007 Mar 2.

引用本文的文献

3
Chitinivorax: The New Kid on the Block of Bacterial 2-Alkyl-4(1)-quinolone Producers.
ACS Chem Biol. 2025 Apr 18;20(4):960-966. doi: 10.1021/acschembio.5c00046. Epub 2025 Mar 27.
4
Antibacterial and DPPH Radical Inhibitory Activities and Molecular Simulation of Compounds Isolated from the Leaves of .
ACS Omega. 2025 Feb 27;10(9):9547-9562. doi: 10.1021/acsomega.4c10788. eCollection 2025 Mar 11.
5
Use of analytical strategies to understand spatial chemical variation in bacterial surface communities.
J Bacteriol. 2025 Feb 20;207(2):e0040224. doi: 10.1128/jb.00402-24. Epub 2025 Jan 28.
6
Hfq-binding small RNA PqsS regulates Pseudomonas aeruginosa pqs quorum sensing system and virulence.
NPJ Biofilms Microbiomes. 2024 Sep 11;10(1):82. doi: 10.1038/s41522-024-00550-4.
7
Relationship between Pyochelin and Quinolone Signal in : A Direction for Future Research.
Int J Mol Sci. 2024 Aug 7;25(16):8611. doi: 10.3390/ijms25168611.
8
mutation-mediated enhancement of phage-mediated combat against .
Front Cell Infect Microbiol. 2024 Feb 26;14:1296777. doi: 10.3389/fcimb.2024.1296777. eCollection 2024.
9
Molecular Genomic Analyses of from Sepsis Outbreaks in Broilers.
Microorganisms. 2024 Jan 25;12(2):250. doi: 10.3390/microorganisms12020250.
10
A bacterial pigment provides cross-species protection from HO- and neutrophil-mediated killing.
Proc Natl Acad Sci U S A. 2024 Jan 9;121(2):e2312334121. doi: 10.1073/pnas.2312334121. Epub 2024 Jan 3.

本文引用的文献

2
Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal.
J Bacteriol. 2007 May;189(9):3425-33. doi: 10.1128/JB.00209-07. Epub 2007 Mar 2.
9
Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa.
J Bacteriol. 2005 Jul;187(13):4372-80. doi: 10.1128/JB.187.13.4372-4380.2005.
10
Biosynthetic pathway of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines.
J Bacteriol. 2005 Jun;187(11):3630-5. doi: 10.1128/JB.187.11.3630-3635.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验