Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.
PLoS Pathog. 2013;9(7):e1003508. doi: 10.1371/journal.ppat.1003508. Epub 2013 Jul 25.
Bacterial populations co-ordinate gene expression collectively through quorum sensing (QS), a cell-to-cell communication mechanism employing diffusible signal molecules. The LysR-type transcriptional regulator (LTTR) protein PqsR (MvfR) is a key component of alkyl-quinolone (AQ)-dependent QS in Pseudomonas aeruginosa. PqsR is activated by 2-alkyl-4-quinolones including the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone), its precursor 2-heptyl-4-hydroxyquinoline (HHQ) and their C9 congeners, 2-nonyl-3-hydroxy-4(1H)-quinolone (C9-PQS) and 2-nonyl-4-hydroxyquinoline (NHQ). These drive the autoinduction of AQ biosynthesis and the up-regulation of key virulence determinants as a function of bacterial population density. Consequently, PqsR constitutes a potential target for novel antibacterial agents which attenuate infection through the blockade of virulence. Here we present the crystal structures of the PqsR co-inducer binding domain (CBD) and a complex with the native agonist NHQ. We show that the structure of the PqsR CBD has an unusually large ligand-binding pocket in which a native AQ agonist is stabilized entirely by hydrophobic interactions. Through a ligand-based design strategy we synthesized and evaluated a series of 50 AQ and novel quinazolinone (QZN) analogues and measured the impact on AQ biosynthesis, virulence gene expression and biofilm development. The simple exchange of two isosteres (OH for NH₂) switches a QZN agonist to an antagonist with a concomitant impact on the induction of bacterial virulence factor production. We also determined the complex crystal structure of a QZN antagonist bound to PqsR revealing a similar orientation in the ligand binding pocket to the native agonist NHQ. This structure represents the first description of an LTTR-antagonist complex. Overall these studies present novel insights into LTTR ligand binding and ligand-based drug design and provide a chemical scaffold for further anti-P. aeruginosa virulence drug development by targeting the AQ receptor PqsR.
细菌种群通过群体感应(QS)集体协调基因表达,这是一种利用可扩散信号分子的细胞间通讯机制。LysR 型转录调节蛋白(LTTR)蛋白 PqsR(MvfR)是铜绿假单胞菌中烷基-喹诺酮(AQ)依赖性 QS 的关键组成部分。PqsR 被包括假单胞菌喹诺酮信号(PQS;2-庚基-3-羟基-4(1H)-喹啉)、其前体 2-庚基-4-羟基喹啉(HHQ)及其 C9 同系物 2-壬基-3-羟基-4(1H)-喹啉(C9-PQS)和 2-壬基-4-羟基喹啉(NHQ)在内的 2-烷基-4-喹诺酮激活。这些驱动 AQ 生物合成的自动诱导和关键毒力决定因素的上调,作为细菌种群密度的函数。因此,PqsR 构成了新型抗菌剂的潜在靶点,这些抗菌剂通过阻断毒力来减轻感染。在这里,我们展示了 PqsR 共诱导剂结合域(CBD)和与天然激动剂 NHQ 的复合物的晶体结构。我们表明,PqsR CBD 的结构具有异常大的配体结合口袋,其中天然 AQ 激动剂完全通过疏水相互作用稳定。通过基于配体的设计策略,我们合成并评估了一系列 50 种 AQ 和新型喹唑啉酮(QZN)类似物,并测量了它们对 AQ 生物合成、毒力基因表达和生物膜发育的影响。简单地交换两个等排体(OH 对 NH₂)将 QZN 激动剂转换为拮抗剂,同时对诱导细菌毒力因子产生产生影响。我们还确定了与 PqsR 结合的 QZN 拮抗剂的复合物晶体结构,揭示了配体结合口袋中与天然激动剂 NHQ 相似的取向。该结构代表了第一个 LTTR-拮抗剂复合物的描述。总的来说,这些研究提供了 LTTR 配体结合和基于配体的药物设计的新见解,并通过针对 AQ 受体 PqsR 为进一步开发抗铜绿假单胞菌毒力药物提供了化学支架。