Suppr超能文献

改善公众对概率性检测结果的解读:分布性评估

Improving public interpretation of probabilistic test results: distributive evaluations.

作者信息

Pighin Stefania, Gonzalez Michel, Savadori Lucia, Girotto Vittorio

机构信息

Department of Cognitive Sciences and Education, University of Trento, Trento, Italy (SP, LS)

Laboratory of Cognitive Psychology, CNRS and Aix-Marseille University, Marseille, France (MG)

出版信息

Med Decis Making. 2015 Jan;35(1):12-5. doi: 10.1177/0272989X14536268. Epub 2014 May 19.

Abstract

Health service users err in posttest probability evaluations. Here we document for the first time that users succeed when they reason about numbers of cases and make distributive evaluations. A sample of women interested in prenatal testing incorrectly evaluated the posttest probability that a given fetus had an anomaly, but regardless of their numeracy level, they correctly apportioned the cases for and against that hypothesis. This finding shows that health service users are not doomed to fail in dealing with single-case probabilities and suggests that probabilistic data can be used effectively for communicating test results.

摘要

医疗服务使用者在检验后概率评估中会犯错。在此我们首次记录到,当使用者根据病例数量进行推理并进行分布评估时,他们会成功。一组对产前检测感兴趣的女性样本错误地评估了给定胎儿出现异常的检验后概率,但无论其算术能力水平如何,她们都正确地分配了支持和反对该假设的病例。这一发现表明,医疗服务使用者在处理单例概率时并非注定会失败,并表明概率数据可有效地用于传达检测结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验