Department of Biology, City College of New York and Graduate Center of City University of New York, New York, NY 10031; and.
Immunology and Microbial Pathogenesis Program, Weill-Cornell Medical School and Sloan Kettering Institute, New York, NY 10021.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8071-6. doi: 10.1073/pnas.1404292111. Epub 2014 May 19.
Lysine-specific demethylase 1 (LSD1) demethylates nucleosomal histone H3 lysine 4 (H3K4) residues in collaboration with the corepressor CoREST/REST corepressor 1 (Rcor1) and regulates cell fates by epigenetically repressing gene targets. The balanced regulation of this demethylase, if any, is however unknown. We now demonstrate the actions of two other Rcor paralogs, Rcor2 and Rcor3, in regulating LSD1 enzymatic activity and biological function in hematopoietic cells. All three Rcor proteins interact with LSD1 and with the erythro-megakaryocytic transcription factor growth factor independence (Gfi)1b; however, whereas Rcor2, like Rcor1, facilitates LSD1-mediated nucleosomal demethylation, Rcor3 competitively inhibits this process. Appending the SANT2 domain of Rcor1 to Rcor3 confers the ability to facilitate LSD1-mediated demethylation on the chimeric Rcor protein. Consistent with their biochemical activities, endogenous Rcor1, Rcor2, and LSD1 promote differentiation, whereas Rcor3 opposes these processes. Recruitment of Rcor3 to cognate gene targets by Gfi1b and LSD1 leads to inhibition of H3K4 demethylation of chromatin and transcriptional derepression of these loci. Remarkably, profound alterations in Rcor1/3 levels during erythroid versus megakaryocytic differentiation potentiate antagonistic outcomes. In mature erythroid cells, a strong upsurge in Rcor3 and a sharp decline in Rcor1 levels counteract LSD1/Rcor1/2-mediated differentiation. In contrast, the opposite changes in Rcor1/3 levels in megakaryocytes favor differentiation and likely maintain homeostasis between these lineages. Overall, our results identify Rcor3 as a natural inhibitor of LSD1 and highlight a dual mechanism of regulating the enzymatic activity and restraining the epigenetic impact of this robust demethylase during hematopoietic differentiation.
赖氨酸特异性去甲基酶 1(LSD1)与核心抑制因子 CoREST/REST 核心抑制因子 1(Rcor1)合作,去甲基化核小体组蛋白 H3 赖氨酸 4(H3K4)残基,通过表观遗传抑制靶基因来调节细胞命运。然而,这种去甲基酶的平衡调节(如果有的话)尚不清楚。我们现在证明了另外两个 Rcor 同源物 Rcor2 和 Rcor3 在调节造血细胞中 LSD1 酶活性和生物学功能方面的作用。这三种 Rcor 蛋白都与 LSD1 相互作用,与红细胞巨核细胞转录因子生长因子独立性(Gfi)1b 相互作用;然而,与 Rcor1 一样,Rcor2 促进 LSD1 介导的核小体去甲基化,而 Rcor3 则竞争性抑制这一过程。将 Rcor1 的 SANT2 结构域附加到 Rcor3 上,赋予嵌合 Rcor 蛋白促进 LSD1 介导的去甲基化的能力。与它们的生化活性一致,内源性 Rcor1、Rcor2 和 LSD1 促进分化,而 Rcor3 则反对这些过程。Gfi1b 和 LSD1 将 Rcor3 招募到同源基因靶标,导致染色质 H3K4 去甲基化的抑制和这些基因座的转录去抑制。值得注意的是,红细胞与巨核细胞分化过程中 Rcor1/3 水平的深刻改变增强了拮抗作用。在成熟的红细胞中,Rcor3 的急剧增加和 Rcor1 水平的急剧下降,与 LSD1/Rcor1/2 介导的分化相抗衡。相比之下,巨核细胞中 Rcor1/3 水平的相反变化有利于分化,并可能维持这些谱系之间的平衡。总的来说,我们的结果确定了 Rcor3 为 LSD1 的天然抑制剂,并强调了在造血分化过程中调节这种强大去甲基酶的酶活性和抑制其表观遗传影响的双重机制。