Institut Lumière Matière, Unité Mixte de Recherche 5306 Université Lyon 1, Centre National de la Recherche Scientifique, Université de Lyon and Institut Universitaire de France, 69622 Villeurbanne Cedex, France; and.
Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):7936-41. doi: 10.1073/pnas.1323366111. Epub 2014 May 19.
Water anomalies still defy explanation. In the supercooled liquid, many quantities, for example heat capacity and isothermal compressibility κT, show a large increase. The question arises if these quantities diverge, or if they go through a maximum. The answer is key to our understanding of water anomalies. However, it has remained elusive in experiments because crystallization always occurred before any extremum is reached. Here we report measurements of the sound velocity of water in a scarcely explored region of the phase diagram, where water is both supercooled and at negative pressure. We find several anomalies: maxima in the adiabatic compressibility and nonmonotonic density dependence of the sound velocity, in contrast with a standard extrapolation of the equation of state. This is reminiscent of the behavior of supercritical fluids. To support this interpretation, we have performed simulations with the 2005 revision of the transferable interaction potential with four points. Simulations and experiments are in near-quantitative agreement, suggesting the existence of a line of maxima in κT (LMκT). This LMκT could either be the thermodynamic consequence of the line of density maxima of water [Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Phys Rev E 53:6144-6154], or emanate from a critical point terminating a liquid-liquid transition [Sciortino F, Poole PH, Essmann U, Stanley HE (1997) Phys Rev E 55:727-737]. At positive pressure, the LMκT has escaped observation because it lies in the "no man's land" beyond the homogeneous crystallization line. We propose that the LMκT emerges from the no man's land at negative pressure.
水的异常现象仍然难以解释。在过冷液体中,许多量,例如热容和等温压缩率 κT,都会有很大的增加。问题是这些量是否发散,或者它们是否经过最大值。答案是我们理解水异常的关键。然而,由于在达到任何极值之前总是发生结晶,因此在实验中这个问题仍然难以捉摸。在这里,我们报告了在相图中一个几乎未被探索的区域中测量水的声速的结果,在这个区域中,水既过冷又处于负压下。我们发现了几个异常现象:绝热压缩率的最大值和声速的非单调密度依赖性,与状态方程的标准外推形成对比。这让人想起超临界流体的行为。为了支持这种解释,我们使用带有四点的可转移相互作用势的 2005 年修订版进行了模拟。模拟和实验结果非常吻合,表明 κT 存在最大值线(LMκT)。这条 LMκT 可能是水的密度最大值线的热力学结果[Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Phys Rev E 53:6144-6154],也可能来自于终止液-液转变的临界点[Sciortino F, Poole PH, Essmann U, Stanley HE (1997) Phys Rev E 55:727-737]。在正压下,LMκT 由于位于单相结晶线之外的“无人区”而无法观察到。我们提出,LMκT 是从负压下的无人区中出现的。