Suppr超能文献

核量子效应 对水的热力学、结构和动力学性质的影响

Nuclear quantum effects on the thermodynamic, structural, and dynamical properties of water.

作者信息

Eltareb Ali, Lopez Gustavo E, Giovambattista Nicolas

机构信息

Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.

出版信息

Phys Chem Chem Phys. 2021 Mar 21;23(11):6914-6928. doi: 10.1039/d0cp04325g. Epub 2021 Mar 17.

Abstract

We perform path-integral molecular dynamics (PIMD) simulations of HO and DO using the q-TIP4P/F model. Simulations are performed at P = 1 bar and over a wide range of temperatures that include the equilibrium (T≥ 273 K) and supercooled (210 ≤T < 273 K) liquid states of water. The densities of both HO and DO calculated from PIMD simulations are in excellent agreement with experiments in the equilibrium and supercooled regimes. We also evaluate important thermodynamic response functions, specifically, the thermal expansion coefficient α(T), isothermal compressibility κ(T), isobaric heat capacity C(T), and static dielectric constant ε(T). While these properties are in excellent [α(T) and κ(T)] or semi-quantitative agreement [C(T) and ε(T)] with experiments in the equilibrium regime, they are increasingly underestimated upon further cooling. It follows that the inclusion of nuclear quantum effects in PIMD simulations of (q-TIP4P/F) water is not sufficient to reproduce the anomalous large fluctuations in density, entropy, and electric dipole moment characteristic of supercooled water. It has been hypothesized that water may exhibit a liquid-liquid critical point (LLCP) in the supercooled regime at P > 1 bar and that such a LLCP generates a maximum in C(T) and κ(T) at 1 bar. Consistent with this hypothesis and in particular, with experiments, we find a maximum in the κ(T) of q-TIP4P/F light and heavy water at T≈ 230-235 K. No maximum in C(T) could be detected down to T≥ 210 K. We also calculate the diffusion coefficient D(T) of HO and DO using the ring-polymer molecular dynamics (RPMD) technique and find that computer simulations are in remarkable good agreement with experiments at all temperatures studied. The results from RPMD/PIMD simulations are also compared with the corresponding results obtained from classical MD simulations of q-TIP4P/F water where atoms are represented by single interacting sites. Surprisingly, we find minor differences in most of the properties studied, with C(T), D(T), and structural properties being the only (expected) exceptions.

摘要

我们使用q-TIP4P/F模型对H₂O和D₂O进行路径积分分子动力学(PIMD)模拟。模拟在P = 1巴的压力下进行,温度范围广泛,包括水的平衡态(T≥273 K)和过冷态(210≤T < 273 K)液态。从PIMD模拟计算得到的H₂O和D₂O的密度在平衡态和过冷态下与实验结果高度吻合。我们还评估了重要的热力学响应函数,具体来说,热膨胀系数α(T)、等温压缩率κ(T)、等压热容C(T)和静态介电常数ε(T)。虽然这些性质在平衡态下与实验结果高度吻合[α(T)和κ(T)]或半定量一致[C(T)和ε(T)],但随着进一步冷却,它们越来越被低估。由此可见,在(q-TIP4P/F)水的PIMD模拟中纳入核量子效应不足以再现过冷水密度、熵和电偶极矩的异常大波动。据推测,在P > 1巴的过冷态下,水可能会出现液-液临界点(LLCP),并且这样的LLCP会在1巴时使C(T)和κ(T)出现最大值。与该假设一致,特别是与实验结果一致,我们发现在T≈230 - 235 K时,q-TIP4P/F轻水和重水的κ(T)出现最大值。在低至T≥210 K时未检测到C(T)的最大值。我们还使用环聚合物分子动力学(RPMD)技术计算了H₂O和D₂O的扩散系数D(T),发现在所有研究温度下计算机模拟与实验结果都非常吻合。RPMD/PIMD模拟结果也与从q-TIP4P/F水的经典分子动力学(MD)模拟得到的相应结果进行了比较,其中原子由单个相互作用位点表示。令人惊讶的是,我们发现在大多数研究性质中差异较小,C(T)、D(T)和结构性质是唯一(预期的)例外。

相似文献

引用本文的文献

本文引用的文献

3
Signatures of a liquid-liquid transition in an ab initio deep neural network model for water.从头算深度神经网络模型中水的液-液相变特征。
Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26040-26046. doi: 10.1073/pnas.2015440117. Epub 2020 Oct 2.
5
Second critical point in two realistic models of water.水中两种实际模型的第二临界点。
Science. 2020 Jul 17;369(6501):289-292. doi: 10.1126/science.abb9796.
9
Absence of amorphous forms when ice is compressed at low temperature.在低温下压缩冰时没有无定形形式。
Nature. 2019 May;569(7757):542-545. doi: 10.1038/s41586-019-1204-5. Epub 2019 May 22.
10
Evidence for high-density liquid water between 0.1 and 0.3 GPa near 150 K.在 150 K 附近 0.1 到 0.3 GPa 之间存在高密度液态水的证据。
Proc Natl Acad Sci U S A. 2019 May 7;116(19):9191-9196. doi: 10.1073/pnas.1819832116. Epub 2019 Mar 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验