Paleček Emil, Cernocká Hana, Ostatná Veronika, Navrátilová Lucie, Brázdová Marie
Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
Anal Chim Acta. 2014 May 30;828:1-8. doi: 10.1016/j.aca.2014.03.029. Epub 2014 Mar 25.
Electrochemical biosensors have the unique ability to convert biological events directly into electrical signals suitable for parallel analysis. Here we utilize specific properties of constant current chronopotentiometric stripping (CPS) in the analysis of protein and DNA-protein complex nanolayers. Rapid potential changes at high negative current intensities (Istr) in CPS are utilized in the analysis of DNA-protein interactions at thiol-modified mercury electrodes. P53 core domain (p53CD) sequence-specific binding to DNA results in a striking decrease in the electrocatalytic signal of free p53. This decrease is related to changes in the accessibility of the electroactive amino acid residues in the p53CD-DNA complex. By adjusting Istr and temperature, weaker non-specific binding can be eliminated or distinguished from the sequence-specific binding. The method also reflects differences in the stabilities of different sequence-specific complexes, including those containing spacers between half-sites of the DNA consensus sequence. The high resolving power of this method is based on the disintegration of the p53CD-DNA complex by the electric field effects at a negatively charged surface and fine adjustment of the millisecond time intervals for which the complex is exposed to these effects. Picomole amounts of p53 proteins and DNA were used for the analysis at full electrode coverage but we show that even 10-20-fold smaller amounts can be analyzed. Our method cannot however take advantage of very low detection limits of the protein CPS detection because low I(str) intensities are deleterious to the p53CD-DNA complex stability at the electrode surface. These data highlight the utility of developing biosensors offering novel approaches for studying real-time macromolecular protein dynamics.
电化学生物传感器具有将生物事件直接转化为适合并行分析的电信号的独特能力。在此,我们利用恒电流计时电位溶出法(CPS)的特定特性来分析蛋白质和DNA-蛋白质复合纳米层。CPS中在高负电流强度(Istr)下的快速电位变化被用于分析硫醇修饰汞电极上的DNA-蛋白质相互作用。p53核心结构域(p53CD)与DNA的序列特异性结合导致游离p53的电催化信号显著降低。这种降低与p53CD-DNA复合物中电活性氨基酸残基可及性的变化有关。通过调节Istr和温度,可以消除较弱的非特异性结合或使其与序列特异性结合区分开来。该方法还反映了不同序列特异性复合物稳定性的差异,包括那些在DNA共有序列半位点之间含有间隔序列的复合物。该方法的高分辨能力基于带负电表面的电场效应使p53CD-DNA复合物解体,以及对复合物暴露于这些效应的毫秒时间间隔的精细调节。在电极完全覆盖的情况下,使用皮摩尔量的p53蛋白和DNA进行分析,但我们表明,即使量小10 - 20倍也可以进行分析。然而,我们的方法无法利用蛋白质CPS检测的极低检测限,因为低I(str)强度对电极表面的p53CD-DNA复合物稳定性有害。这些数据突出了开发生物传感器的实用性,为研究实时大分子蛋白质动力学提供了新方法。