Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114.
J Neurosci. 2014 May 21;34(21):7351-60. doi: 10.1523/JNEUROSCI.5252-13.2014.
The receptive fields of early visual neurons are anchored in retinotopic coordinates (Hubel and Wiesel, 1962). Eye movements shift these receptive fields and therefore require that different populations of neurons encode an object's constituent features across saccades. Whether feature groupings are preserved across successive fixations or processing starts anew with each fixation has been hotly debated (Melcher and Morrone, 2003; Melcher, 2005, 2010; Knapen et al., 2009; Cavanagh et al., 2010a,b; Morris et al., 2010). Here we show that feature integration initially occurs within retinotopic coordinates, but is then conserved within a spatiotopic coordinate frame independent of where the features fall on the retinas. With human observers, we first found that the relative timing of visual features plays a critical role in determining the spatial area over which features are grouped. We exploited this temporal dependence of feature integration to show that features co-occurring within 45 ms remain grouped across eye movements. Our results thus challenge purely feedforward models of feature integration (Pelli, 2008; Freeman and Simoncelli, 2011) that begin de novo after every eye movement, and implicate the involvement of brain areas beyond early visual cortex. The strong temporal dependence we quantify and its link with trans-saccadic object perception instead suggest that feature integration depends, at least in part, on feedback from higher brain areas (Mumford, 1992; Rao and Ballard, 1999; Di Lollo et al., 2000; Moore and Armstrong, 2003; Stanford et al., 2010).
早期视觉神经元的感受野是固着在视网膜坐标上的(Hubel 和 Wiesel,1962)。眼球运动改变了这些感受野,因此需要不同的神经元群体在眼跳过程中对物体的组成特征进行编码。特征分组是否在连续的注视中得到保留,或者在每次注视时重新开始,这一直是一个激烈争论的问题(Melcher 和 Morrone,2003;Melcher,2005,2010;Knapen 等人,2009;Cavanagh 等人,2010a,b;Morris 等人,2010)。在这里,我们表明特征整合最初发生在视网膜坐标内,但随后在与视网膜上特征位置无关的空间坐标框架内得到保留。通过对人类观察者的研究,我们首先发现视觉特征的相对时间在决定特征分组的空间区域中起着关键作用。我们利用特征整合的这种时间依赖性,表明在 45 毫秒内共同出现的特征在眼球运动中仍保持分组。我们的结果因此挑战了纯粹的特征整合前馈模型(Pelli,2008;Freeman 和 Simoncelli,2011),这些模型在每次眼球运动后都从头开始,并且暗示了大脑区域除了早期视觉皮层之外的参与。我们量化的强烈的时间依赖性及其与跨眼跳物体感知的联系,反而表明特征整合至少部分依赖于来自大脑更高区域的反馈(Mumford,1992;Rao 和 Ballard,1999;Di Lollo 等人,2000;Moore 和 Armstrong,2003;斯坦福等人,2010)。