Kumari Rashmi, Kumar Rajendra, Lynn Andrew
School of Computational and Integrative Sciences, Jawaharlal Nehru University , New Delhi 110067, India.
J Chem Inf Model. 2014 Jul 28;54(7):1951-62. doi: 10.1021/ci500020m. Epub 2014 Jun 19.
Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA), a method to estimate interaction free energies, has been increasingly used in the study of biomolecular interactions. Recently, this method has also been applied as a scoring function in computational drug design. Here a new tool g_mmpbsa, which implements the MM-PBSA approach using subroutines written in-house or sourced from the GROMACS and APBS packages is described. g_mmpbsa was developed as part of the Open Source Drug Discovery (OSDD) consortium. Its aim is to integrate high-throughput molecular dynamics (MD) simulations with binding energy calculations. The tool provides options to select alternative atomic radii and different nonpolar solvation models including models based on the solvent accessible surface area (SASA), solvent accessible volume (SAV), and a model which contains both repulsive (SASA-SAV) and attractive components (described using a Weeks-Chandler-Andersen like integral method). We showcase the effectiveness of the tool by comparing the calculated interaction energy of 37 structurally diverse HIV-1 protease inhibitor complexes with their experimental binding free energies. The effect of varying several combinations of input parameters such as atomic radii, dielectric constant, grid resolution, solute-solvent dielectric boundary definition, and nonpolar models was investigated. g_mmpbsa can also be used to estimate the energy contribution per residue to the binding energy. It has been used to identify those residues in HIV-1 protease that are most critical for binding a range of inhibitors.
分子力学泊松-玻尔兹曼表面积法(MM-PBSA)是一种估算相互作用自由能的方法,在生物分子相互作用研究中应用越来越广泛。最近,该方法还被用作计算药物设计中的一种评分函数。本文介绍了一种新工具g_mmpbsa,它使用内部编写的子程序或源自GROMACS和APBS软件包的子程序来实现MM-PBSA方法。g_mmpbsa是作为开源药物发现(OSDD)联盟的一部分开发的。其目的是将高通量分子动力学(MD)模拟与结合能计算相结合。该工具提供了选择替代原子半径和不同非极性溶剂化模型的选项,包括基于溶剂可及表面积(SASA)、溶剂可及体积(SAV)的模型,以及一个同时包含排斥(SASA-SAV)和吸引成分(使用类似Weeks-Chandler-Andersen积分方法描述)的模型。我们通过比较37种结构多样的HIV-1蛋白酶抑制剂复合物的计算相互作用能与其实验结合自由能,展示了该工具的有效性。研究了改变原子半径、介电常数、网格分辨率、溶质-溶剂介电边界定义和非极性模型等几种输入参数组合的影响。g_mmpbsa还可用于估计每个残基对结合能的能量贡献。它已被用于识别HIV-1蛋白酶中对一系列抑制剂结合最为关键的那些残基。