Suppr超能文献

RIDL 假说:可转座元件作为长非编码 RNA 的功能结构域。

The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs.

机构信息

Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.

出版信息

RNA. 2014 Jul;20(7):959-76. doi: 10.1261/rna.044560.114. Epub 2014 May 21.

Abstract

Our genome contains tens of thousands of long noncoding RNAs (lncRNAs), many of which are likely to have genetic regulatory functions. It has been proposed that lncRNA are organized into combinations of discrete functional domains, but the nature of these and their identification remain elusive. One class of sequence elements that is enriched in lncRNA is represented by transposable elements (TEs), repetitive mobile genetic sequences that have contributed widely to genome evolution through a process termed exaptation. Here, we link these two concepts by proposing that exonic TEs act as RNA domains that are essential for lncRNA function. We term such elements Repeat Insertion Domains of LncRNAs (RIDLs). A growing number of RIDLs have been experimentally defined, where TE-derived fragments of lncRNA act as RNA-, DNA-, and protein-binding domains. We propose that these reflect a more general phenomenon of exaptation during lncRNA evolution, where inserted TE sequences are repurposed as recognition sites for both protein and nucleic acids. We discuss a series of genomic screens that may be used in the future to systematically discover RIDLs. The RIDL hypothesis has the potential to explain how functional evolution can keep pace with the rapid gene evolution observed in lncRNA. More practically, TE maps may in the future be used to predict lncRNA function.

摘要

我们的基因组包含数以万计的长非编码 RNA(lncRNA),其中许多可能具有遗传调控功能。有人提出,lncRNA 可以组合成离散的功能域,但这些功能域的性质及其鉴定仍然难以捉摸。一类在 lncRNA 中丰富的序列元件是转座元件(TEs),它们是重复的移动遗传序列,通过一种称为适应的过程广泛参与了基因组进化。在这里,我们通过提出外显子 TEs 作为 lncRNA 功能所必需的 RNA 结构域,将这两个概念联系起来。我们将这些元素称为长非编码 RNA 的重复插入结构域(RIDLs)。越来越多的 RIDLs 已经通过实验定义,其中 lncRNA 的 TE 衍生片段充当 RNA、DNA 和蛋白质结合结构域。我们提出,这些反映了 lncRNA 进化过程中适应的更普遍现象,其中插入的 TE 序列被重新用作蛋白质和核酸的识别位点。我们讨论了一系列未来可能用于系统发现 RIDLs 的基因组筛选。RIDL 假说有可能解释功能进化如何跟上 lncRNA 中观察到的快速基因进化。更实际的是,TE 图谱将来可能用于预测 lncRNA 的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/991e/4114693/0982ff577e06/959f01.jpg

相似文献

1
The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs.
RNA. 2014 Jul;20(7):959-76. doi: 10.1261/rna.044560.114. Epub 2014 May 21.
2
Ancient exapted transposable elements promote nuclear enrichment of human long noncoding RNAs.
Genome Res. 2019 Feb;29(2):208-222. doi: 10.1101/gr.229922.117. Epub 2018 Dec 26.
3
Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs.
PLoS Genet. 2013 Apr;9(4):e1003470. doi: 10.1371/journal.pgen.1003470. Epub 2013 Apr 25.
5
The intertwining of transposable elements and non-coding RNAs.
Int J Mol Sci. 2013 Jun 26;14(7):13307-28. doi: 10.3390/ijms140713307.
7
Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications.
Trends Genet. 2014 Oct;30(10):439-52. doi: 10.1016/j.tig.2014.08.004. Epub 2014 Sep 11.
9
The domain structure and distribution of Alu elements in long noncoding RNAs and mRNAs.
RNA. 2016 Feb;22(2):254-64. doi: 10.1261/rna.048280.114. Epub 2015 Dec 10.

引用本文的文献

5
Transposable Elements Contribute to the Regulation of Long Noncoding RNAs in .
Insects. 2024 Nov 30;15(12):950. doi: 10.3390/insects15120950.
6
Localization is the key to action: regulatory peculiarities of lncRNAs.
Front Genet. 2024 Dec 16;15:1478352. doi: 10.3389/fgene.2024.1478352. eCollection 2024.
7
From the genome's perspective: Bearing somatic retrotransposition to leverage the regulatory potential of L1 RNAs.
Bioessays. 2025 Feb;47(2):e2400125. doi: 10.1002/bies.202400125. Epub 2024 Nov 9.
10
Human lncRNAs harbor conserved modules embedded in different sequence contexts.
Noncoding RNA Res. 2024 Jun 22;9(4):1257-1270. doi: 10.1016/j.ncrna.2024.06.013. eCollection 2024 Dec.

本文引用的文献

1
A new lncRNA, APTR, associates with and represses the CDKN1A/p21 promoter by recruiting polycomb proteins.
PLoS One. 2014 Apr 18;9(4):e95216. doi: 10.1371/journal.pone.0095216. eCollection 2014.
2
The evolution of lncRNA repertoires and expression patterns in tetrapods.
Nature. 2014 Jan 30;505(7485):635-40. doi: 10.1038/nature12943. Epub 2014 Jan 19.
3
Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome.
Mol Cell. 2014 Jan 23;53(2):301-16. doi: 10.1016/j.molcel.2014.01.002.
4
Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals.
Genome Res. 2014 Apr;24(4):616-28. doi: 10.1101/gr.165035.113. Epub 2014 Jan 15.
6
Functional microRNAs and target sites are created by lineage-specific transposition.
Hum Mol Genet. 2014 Apr 1;23(7):1783-93. doi: 10.1093/hmg/ddt569. Epub 2013 Nov 13.
9
A long noncoding RNA mediates both activation and repression of immune response genes.
Science. 2013 Aug 16;341(6147):789-92. doi: 10.1126/science.1240925. Epub 2013 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验