Suppr超能文献

长链非编码RNA文库的动态演变:机制与生物学意义

Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications.

作者信息

Kapusta Aurélie, Feschotte Cédric

机构信息

Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.

出版信息

Trends Genet. 2014 Oct;30(10):439-52. doi: 10.1016/j.tig.2014.08.004. Epub 2014 Sep 11.

Abstract

Thousands of genes encoding long noncoding RNAs (lncRNAs) have been identified in all vertebrate genomes thus far examined. The list of lncRNAs partaking in arguably important biochemical, cellular, and developmental activities is steadily growing. However, it is increasingly clear that lncRNA repertoires are subject to weak functional constraint and rapid turnover during vertebrate evolution. We discuss here some of the factors that may explain this apparent paradox, including relaxed constraint on sequence to maintain lncRNA structure/function, extensive redundancy in the regulatory circuits in which lncRNAs act, as well as adaptive and non-adaptive forces such as genetic drift. We explore the molecular mechanisms promoting the birth and rapid evolution of lncRNA genes, with an emphasis on the influence of bidirectional transcription and transposable elements, two pervasive features of vertebrate genomes. Together these properties reveal a remarkably dynamic and malleable noncoding transcriptome which may represent an important source of robustness and evolvability.

摘要

到目前为止,在所有已检测的脊椎动物基因组中,已鉴定出数千个编码长链非编码RNA(lncRNA)的基因。参与重要生化、细胞和发育活动的lncRNA列表正在稳步增加。然而,越来越明显的是,在脊椎动物进化过程中,lncRNA库受到的功能限制较弱,更新速度较快。我们在此讨论一些可能解释这一明显矛盾的因素,包括对维持lncRNA结构/功能的序列限制放松、lncRNA发挥作用的调控回路中的广泛冗余,以及诸如遗传漂变等适应性和非适应性力量。我们探讨了促进lncRNA基因产生和快速进化的分子机制,重点关注双向转录和转座元件的影响,这是脊椎动物基因组的两个普遍特征。这些特性共同揭示了一个非常动态且可塑性强的非编码转录组,它可能是稳健性和可进化性的重要来源。

相似文献

1
Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications.
Trends Genet. 2014 Oct;30(10):439-52. doi: 10.1016/j.tig.2014.08.004. Epub 2014 Sep 11.
2
Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs.
PLoS Genet. 2013 Apr;9(4):e1003470. doi: 10.1371/journal.pgen.1003470. Epub 2013 Apr 25.
3
The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs.
RNA. 2014 Jul;20(7):959-76. doi: 10.1261/rna.044560.114. Epub 2014 May 21.
5
Long Noncoding RNAs: Molecular Modalities to Organismal Functions.
Annu Rev Biochem. 2020 Jun 20;89:283-308. doi: 10.1146/annurev-biochem-062917-012708.
6
Sizing up long non-coding RNAs: do lncRNAs have secondary and tertiary structure?
Bioarchitecture. 2012 Nov-Dec;2(6):189-99. doi: 10.4161/bioa.22592.
7
Emerging Properties and Functional Consequences of Noncoding Transcription.
Genetics. 2017 Oct;207(2):357-367. doi: 10.1534/genetics.117.300095.
8
Long noncoding RNAs: past, present, and future.
Genetics. 2013 Mar;193(3):651-69. doi: 10.1534/genetics.112.146704.
9
The molecular structure of long non-coding RNAs: emerging patterns and functional implications.
Crit Rev Biochem Mol Biol. 2020 Dec;55(6):662-690. doi: 10.1080/10409238.2020.1828259. Epub 2020 Oct 12.
10
Super-lncRNAs: identification of lncRNAs that target super-enhancers via RNA:DNA:DNA triplex formation.
RNA. 2017 Nov;23(11):1729-1742. doi: 10.1261/rna.061317.117. Epub 2017 Aug 24.

引用本文的文献

1
Long Noncoding RNAs as Emerging Regulators of Seed Development, Germination, and Senescence.
Int J Mol Sci. 2025 Sep 6;26(17):8702. doi: 10.3390/ijms26178702.
4
6
Exploring the Utility of Long Non-Coding RNAs for Assessing the Health Consequences of Vaping.
Int J Mol Sci. 2024 Aug 5;25(15):8554. doi: 10.3390/ijms25158554.
7
Expression of Transposable Elements throughout the Trematode Life Cycle.
Noncoding RNA. 2024 Jul 3;10(4):39. doi: 10.3390/ncrna10040039.
9
Molecular Mimicry of Transposable Elements in Plants.
Plant Cell Physiol. 2025 May 17;66(4):490-495. doi: 10.1093/pcp/pcae058.

本文引用的文献

1
Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12426-31. doi: 10.1073/pnas.1413299111. Epub 2014 Aug 5.
2
Physiological roles of long noncoding RNAs: insight from knockout mice.
Trends Cell Biol. 2014 Oct;24(10):594-602. doi: 10.1016/j.tcb.2014.06.003. Epub 2014 Jul 9.
4
Transcriptional regulatory functions of nuclear long noncoding RNAs.
Trends Genet. 2014 Aug;30(8):348-55. doi: 10.1016/j.tig.2014.06.001. Epub 2014 Jun 25.
5
Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix.
Nat Struct Mol Biol. 2014 Jul;21(7):633-40. doi: 10.1038/nsmb.2844. Epub 2014 Jun 22.
7
Genome-wide identification and characterization of long intergenic non-coding RNAs in Ganoderma lucidum.
PLoS One. 2014 Jun 16;9(6):e99442. doi: 10.1371/journal.pone.0099442. eCollection 2014.
8
Dicer-microRNA-Myc circuit promotes transcription of hundreds of long noncoding RNAs.
Nat Struct Mol Biol. 2014 Jul;21(7):585-90. doi: 10.1038/nsmb.2842. Epub 2014 Jun 15.
9
Computational analysis of conserved RNA secondary structure in transcriptomes and genomes.
Annu Rev Biophys. 2014;43:433-56. doi: 10.1146/annurev-biophys-051013-022950.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验