Haupt Julia, Deichsel Alexandra, Stange Katja, Ast Cindy, Bocciardi Renata, Ravazzolo Roberto, Di Rocco Maja, Ferrari Paola, Landi Antonio, Kaplan Frederick S, Shore Eileen M, Reissner Carsten, Seemann Petra
Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany, Department of Orthopaedic Surgery, Perelman School of Medicine.
Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany, Berlin Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
Hum Mol Genet. 2014 Oct 15;23(20):5364-77. doi: 10.1093/hmg/ddu255. Epub 2014 May 22.
Fibrodysplasia ossificans progressiva (FOP) is a disabling genetic disorder of progressive heterotopic ossification (HO). Here, we report a patient with an ultra-rare point mutation [c.619C>G, p.Q207E] located in a codon adjacent to the most common FOP mutation [c.617G>A, p.R206H] of Activin A Receptor, type 1 (ACVR1) and that affects the same intracellular amino acid position in the GS activation domain as the engineered constitutively active (c.a.) variant p.Q207D. It was predicted that both mutations at residue 207 have similar functional effects by introducing a negative charge. Transgenic p.Q207D-c.a. mice have served as a model for FOP HO in several in vivo studies. However, we found that the engineered ACVR1(Q207D-c.a.) is significantly more active than the classic FOP mutation ACVR1(R206H) when overexpressed in chicken limbs and in differentiation assays of chondrogenesis, osteogenesis and myogenesis. Importantly, our studies reveal that the ACVR1(Q207E) resembles the classic FOP receptor in these assays, not the engineered ACVR1(Q207D-c.a.). Notably, reporter gene assays revealed that both naturally occurring FOP receptors (ACVR1(R206H) and ACVR1(Q207E)) were activated by BMP7 and were sensitive to deletion of the ligand binding domain, whereas the engineered ACVR1(Q207D-c.a.) exhibited ligand independent activity. We performed an in silico analysis and propose a structural model for p.Q207D-c.a. that irreversibly relocates the GS domain into an activating position, where it becomes ligand independent. We conclude that the engineered p.Q207D-c.a. mutation has severe limitations as a model for FOP, whereas the naturally occurring mutations p.R206H and p.Q207E facilitate receptor activation, albeit in a reversible manner.
进行性骨化性纤维发育不良(FOP)是一种导致残疾的进行性异位骨化(HO)的遗传性疾病。在此,我们报告一名患者,其激活素A受体1型(ACVR1)中存在一个超罕见的点突变[c.619C>G,p.Q207E],该突变位于与最常见的FOP突变[c.617G>A,p.R206H]相邻的密码子中,且与工程化的组成型激活(c.a.)变体p.Q207D影响GS激活域中相同的细胞内氨基酸位置。据预测,第207位残基的这两个突变通过引入负电荷具有相似的功能效应。转基因p.Q207D-c.a.小鼠在多项体内研究中作为FOP HO的模型。然而,我们发现,在鸡肢体以及软骨生成、骨生成和成肌分化试验中过表达时,工程化的ACVR1(Q207D-c.a.)比经典的FOP突变ACVR1(R206H)活性显著更高。重要的是,我们的研究表明,在这些试验中ACVR1(Q207E)类似于经典的FOP受体,而非工程化的ACVR1(Q207D-c.a.)。值得注意的是,报告基因试验表明,两种天然存在的FOP受体(ACVR1(R206H)和ACVR1(Q207E))均被BMP7激活,且对配体结合域的缺失敏感,而工程化的ACVR1(Q207D-c.a.)表现出配体非依赖性活性。我们进行了计算机模拟分析,并提出了p.Q207D-c.a.的结构模型,该模型不可逆地将GS结构域重新定位到激活位置,使其变为配体非依赖性。我们得出结论,工程化的p.Q207D-c.a.突变作为FOP模型存在严重局限性,而天然存在的突变p.R206H和p.Q207E尽管以可逆方式促进受体激活。