Suppr超能文献

由于单个氨基酸插入导致多谷氨酰胺淀粉样原纤维构象转换。

Conformational switching in PolyGln amyloid fibrils resulting from a single amino acid insertion.

机构信息

Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Maryland.

Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Maryland; Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland.

出版信息

Biophys J. 2014 May 20;106(10):2134-42. doi: 10.1016/j.bpj.2014.03.047.

Abstract

The established correlation between neurodegenerative disorders and intracerebral deposition of polyglutamine aggregates motivates attempts to better understand their fibrillar structure. We designed polyglutamines with a few lysines inserted to overcome the hindrance of extreme insolubility and two D-lysines to limit the lengths of β-strands. One is 33 amino acids long (PolyQKd-33) and the other has one fewer glutamine (PolyQKd-32). Both form well-dispersed fibrils suitable for analysis by electron microscopy. Electron diffraction confirmed cross-β structures in both fibrils. Remarkably, the deletion of just one glutamine residue from the middle of the peptide leads to substantially different amyloid structures. PolyQKd-32 fibrils are consistently 10-20% wider than PolyQKd-33, as measured by negative staining, cryo-electron microscopy, and scanning transmission electron microscopy. Scanning transmission electron microscopy analysis revealed that the PolyQKd-32 fibrils have 50% higher mass-per-length than PolyQKd-33. This distinction can be explained by a superpleated β-structure model for PolyQKd-33 and a model with two β-solenoid protofibrils for PolyQKd-32. These data provide evidence for β-arch-containing structures in polyglutamine fibrils and open future possibilities for structure-based drug design.

摘要

神经退行性疾病与脑内聚谷氨酰胺聚集物的相关性已得到证实,这促使人们试图更好地了解其纤维结构。我们设计了一些带有插入赖氨酸的聚谷氨酰胺,以克服极度不溶性的障碍,并使用两个 D-赖氨酸来限制β-链的长度。一个由 33 个氨基酸组成(PolyQKd-33),另一个少一个谷氨酰胺(PolyQKd-32)。两者都形成了分散良好的纤维,适合电子显微镜分析。电子衍射证实了两种纤维中都存在交叉-β结构。值得注意的是,从肽的中间仅删除一个谷氨酰胺残基,就会导致淀粉样结构发生实质性变化。与 PolyQKd-33 相比,PolyQKd-32 纤维的宽度始终要宽 10-20%,这是通过负染色、冷冻电子显微镜和扫描透射电子显微镜测量得出的。扫描透射电子显微镜分析表明,PolyQKd-32 纤维的质量/长度比 PolyQKd-33 高 50%。这种差异可以用 PolyQKd-33 的超折叠β-结构模型和 PolyQKd-32 的两个β-螺线管原纤维模型来解释。这些数据为聚谷氨酰胺纤维中的β-拱形结构提供了证据,并为基于结构的药物设计开辟了未来的可能性。

相似文献

1
Conformational switching in PolyGln amyloid fibrils resulting from a single amino acid insertion.
Biophys J. 2014 May 20;106(10):2134-42. doi: 10.1016/j.bpj.2014.03.047.
2
Amyloid-like features of polyglutamine aggregates and their assembly kinetics.
Biochemistry. 2002 Jun 11;41(23):7391-9. doi: 10.1021/bi011772q.
3
α-Synuclein Amyloid Fibrils with Two Entwined, Asymmetrically Associated Protofibrils.
J Biol Chem. 2016 Jan 29;291(5):2310-8. doi: 10.1074/jbc.M115.698787. Epub 2015 Dec 7.
4
Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis.
J Mol Biol. 2004 Jan 16;335(3):833-42. doi: 10.1016/j.jmb.2003.11.008.
5
Aggregation and fibril morphology of the Arctic mutation of Alzheimer's Aβ peptide by CD, TEM, STEM and in situ AFM.
J Struct Biol. 2012 Oct;180(1):174-89. doi: 10.1016/j.jsb.2012.06.010. Epub 2012 Jun 28.
8
Molecular structures of amyloid and prion fibrils: consensus versus controversy.
Acc Chem Res. 2013 Jul 16;46(7):1487-96. doi: 10.1021/ar300282r. Epub 2013 Jan 7.
9
Evidence for novel beta-sheet structures in Iowa mutant beta-amyloid fibrils.
Biochemistry. 2009 Jul 7;48(26):6072-84. doi: 10.1021/bi9002666.
10
Alzheimer's amyloid fibrils: structure and assembly.
Biochim Biophys Acta. 2000 Jul 26;1502(1):16-30. doi: 10.1016/s0925-4439(00)00029-6.

引用本文的文献

1
Proteomic Evidence for Amyloidogenic Cross-Seeding in Fibrinaloid Microclots.
Int J Mol Sci. 2024 Oct 8;25(19):10809. doi: 10.3390/ijms251910809.

本文引用的文献

1
Structural features and domain organization of huntingtin fibrils.
J Biol Chem. 2012 Sep 14;287(38):31739-46. doi: 10.1074/jbc.M112.353839. Epub 2012 Jul 16.
2
Structural characterization of polyglutamine fibrils by solid-state NMR spectroscopy.
J Mol Biol. 2011 Sep 9;412(1):121-36. doi: 10.1016/j.jmb.2011.06.045. Epub 2011 Jul 13.
4
Amyloid structure and assembly: insights from scanning transmission electron microscopy.
J Struct Biol. 2011 Jan;173(1):1-13. doi: 10.1016/j.jsb.2010.09.018. Epub 2010 Sep 22.
5
Protein homorepeats sequences, structures, evolution, and functions.
Adv Protein Chem Struct Biol. 2010;79:59-88. doi: 10.1016/S1876-1623(10)79002-7.
6
Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going?
J Mol Cell Biol. 2010 Aug;2(4):180-91. doi: 10.1093/jmcb/mjq005. Epub 2010 Apr 21.
7
Beta arcades: recurring motifs in naturally occurring and disease-related amyloid fibrils.
FASEB J. 2010 May;24(5):1311-9. doi: 10.1096/fj.09-145979. Epub 2009 Dec 23.
9
Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core.
Science. 2008 Mar 14;319(5869):1523-6. doi: 10.1126/science.1151839.
10
Mass mapping of large globin complexes by scanning transmission electron microscopy.
Methods Enzymol. 2008;436:487-501. doi: 10.1016/S0076-6879(08)36027-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验