Suppr超能文献

利用微流控液滴机器人进行纳升规模的蛋白质结晶与筛选。

Nanoliter-scale protein crystallization and screening with a microfluidic droplet robot.

作者信息

Zhu Ying, Zhu Li-Na, Guo Rui, Cui Heng-Jun, Ye Sheng, Fang Qun

机构信息

Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.

Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.

出版信息

Sci Rep. 2014 May 23;4:5046. doi: 10.1038/srep05046.

Abstract

Large-scale screening of hundreds or even thousands of crystallization conditions while with low sample consumption is in urgent need, in current structural biology research. Here we describe a fully-automated droplet robot for nanoliter-scale crystallization screening that combines the advantages of both automated robotics technique for protein crystallization screening and the droplet-based microfluidic technique. A semi-contact dispensing method was developed to achieve flexible, programmable and reliable liquid-handling operations for nanoliter-scale protein crystallization experiments. We applied the droplet robot in large-scale screening of crystallization conditions of five soluble proteins and one membrane protein with 35-96 different crystallization conditions, study of volume effects on protein crystallization, and determination of phase diagrams of two proteins. The volume for each droplet reactor is only ca. 4-8 nL. The protein consumption significantly reduces 50-500 fold compared with current crystallization stations.

摘要

在当前的结构生物学研究中,迫切需要在低样品消耗的情况下对数百甚至数千种结晶条件进行大规模筛选。在此,我们描述了一种用于纳升规模结晶筛选的全自动液滴机器人,它结合了用于蛋白质结晶筛选的自动化机器人技术和基于液滴的微流控技术的优点。开发了一种半接触式分配方法,以实现用于纳升规模蛋白质结晶实验的灵活、可编程且可靠的液体处理操作。我们将该液滴机器人应用于对五种可溶性蛋白质和一种膜蛋白的35 - 96种不同结晶条件的结晶条件大规模筛选、蛋白质结晶体积效应的研究以及两种蛋白质相图的测定。每个液滴反应器的体积仅约4 - 8纳升。与当前的结晶工作站相比,蛋白质消耗量显著降低了50 - 500倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb2c/5154416/1dca8bfa0b5a/srep05046-f1.jpg

相似文献

3
Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins.
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19243-8. doi: 10.1073/pnas.0607502103. Epub 2006 Dec 11.
6
User-loaded SlipChip for equipment-free multiplexed nanoliter-scale experiments.
J Am Chem Soc. 2010 Jan 13;132(1):106-11. doi: 10.1021/ja908555n.
7
3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode.
ACS Appl Mater Interfaces. 2017 Apr 5;9(13):11837-11845. doi: 10.1021/acsami.6b15933. Epub 2017 Mar 23.
8
9
Microfluidic Approaches for Protein Crystal Structure Analysis.
Anal Sci. 2016;32(1):3-9. doi: 10.2116/analsci.32.3.

引用本文的文献

2
A droplet robotic system enabled by electret-induced polarization on droplet.
Nat Commun. 2024 Jul 23;15(1):6220. doi: 10.1038/s41467-024-50520-9.
5
Origin of Species before Origin of Life: The Role of Speciation in Chemical Evolution.
Life (Basel). 2021 Feb 17;11(2):154. doi: 10.3390/life11020154.
7
Counting Proteins in Single Cells with Addressable Droplet Microarrays.
J Vis Exp. 2018 Jul 6(137):56110. doi: 10.3791/56110.
8
Microfluidic chambers using fluid walls for cell biology.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E5926-E5933. doi: 10.1073/pnas.1805449115. Epub 2018 Jun 12.

本文引用的文献

1
FtsZ protofilaments use a hinge-opening mechanism for constrictive force generation.
Science. 2013 Jul 26;341(6144):392-5. doi: 10.1126/science.1239248.
4
A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7665-70. doi: 10.1073/pnas.1106752109. Epub 2012 Apr 30.
5
Surfactants in droplet-based microfluidics.
Lab Chip. 2012 Feb 7;12(3):422-33. doi: 10.1039/c1lc20582j. Epub 2011 Oct 20.
6
Multifunctional picoliter droplet manipulation platform and its application in single cell analysis.
Anal Chem. 2011 Oct 1;83(19):7570-6. doi: 10.1021/ac201678g. Epub 2011 Sep 7.
7
Automated microfluidic screening assay platform based on DropLab.
Anal Chem. 2010 Dec 1;82(23):9941-7. doi: 10.1021/ac1020479. Epub 2010 Nov 2.
8
Mapping and manipulating temperature-concentration phase diagrams using microfluidics.
Lab Chip. 2010 Jul 7;10(13):1696-9. doi: 10.1039/b925661j. Epub 2010 Apr 20.
9
Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip.
Annu Rev Biophys. 2010;39:139-58. doi: 10.1146/annurev.biophys.050708.133630.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验