Zhang Ruotong, Zhang Chengzhi, Fan Xiaoxue, Au Yeung Christina C K, Li Huiyanchen, Lin Haisong, Shum Ho Cheung
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
Nat Commun. 2024 Jul 23;15(1):6220. doi: 10.1038/s41467-024-50520-9.
Robotics for scientific research are evolving from grasping macro-scale solid materials to directly actuating micro-scale liquid samples. However, current liquid actuation mechanisms often restrict operable liquid types or compromise the activity of biochemical samples by introducing interfering mediums. Here, we propose a robotic liquid handling system enabled by a novel droplet actuation mechanism, termed electret-induced polarization on droplet (EPD). EPD enables all-liquid actuation in principle and experimentally exhibits generality for actuating various inorganic/organic liquids with relative permittivity ranging from 2.25 to 84.2 and volume from 500 nL to 1 mL. Moreover, EPD is capable of actuating various biochemical samples without compromising their activities, including various body fluids, living cells, and proteins. A robotic system is also coupled with the EPD mechanism to enable full automation. EPD's high adaptability with liquid types and biochemical samples thus promotes the automation of liquid-based scientific experiments across multiple disciplines.
用于科学研究的机器人技术正在从抓取宏观尺度的固体材料发展到直接操控微观尺度的液体样本。然而,当前的液体驱动机制通常会限制可操作的液体类型,或者通过引入干扰介质来损害生化样本的活性。在此,我们提出了一种由新型液滴驱动机制实现的机器人液体处理系统,称为液滴上的驻极体诱导极化(EPD)。EPD原则上实现了全液体驱动,并且在实验中展示了驱动各种无机/有机液体的通用性,这些液体的相对介电常数范围为2.25至84.2,体积从500 nL到1 mL。此外,EPD能够驱动各种生化样本而不损害其活性,包括各种体液、活细胞和蛋白质。一个机器人系统也与EPD机制相结合以实现完全自动化。EPD对液体类型和生化样本的高适应性因此推动了跨多个学科的基于液体的科学实验的自动化。