Zhou Xiaoying, Xi Wenhui, Luo Yin, Cao Siqin, Wei Guanghong
State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China.
J Phys Chem B. 2014 Jun 19;118(24):6733-41. doi: 10.1021/jp503458w. Epub 2014 Jun 5.
Alzheimer's disease (AD) is associated with the pathological self-assembly of amyloid-β (Aβ) peptides into β-sheet-rich oligomers and insoluble amyloid fibrils. Experimental studies reported that 1,2-(dimethoxymethano)fullerene (DMF), a water-soluble fullerene derivative, inhibits strongly Aβ peptide aggregation at the early stage. However, the interaction and binding mechanisms are not well understood. In this study, we have investigated the detailed interaction of a DMF molecule with a fibrillar hexamer of full-length Aβ42 and the resulting structural alterations by performing multiple all-atom explicit solvent molecular dynamics (MD) simulations. Starting from different initial states with a minimum distance of 2 nm between the DMF and the Aβ protofibril, our MD simulations show that the DMF binds to the Aβ protofibril via both slow and fast binding processes. Three dominant binding sites are identified: the central hydrophobic core (CHC) site (17LVFFA21), the turn site (27NKGAI31), and the C-terminal β-sheet site consisting of the smallest side-chain residue glycine and hydrophobic residues (31IIGLMVGGVVI41). Binding energy analyses reveal the importance of π-stacking interactions, especially in the CHC site, hydrophobic interactions, and curvature matching. Strikingly, we find that the binding of DMF to the turn region can disrupt the D23-K28 salt-bridge that is important for the Aβ fibrillation. These results provide molecular insight into the binding mechanism of fullerene to Aβ protofibrils and offer new routes for the therapeutic drug design using fullerene derivatives against AD.
阿尔茨海默病(AD)与淀粉样β(Aβ)肽病理性自组装形成富含β折叠的寡聚体和不溶性淀粉样纤维有关。实验研究报道,水溶性富勒烯衍生物1,2 -(二甲氧基甲基)富勒烯(DMF)在早期能强烈抑制Aβ肽聚集。然而,其相互作用和结合机制尚不清楚。在本研究中,我们通过进行多次全原子显式溶剂分子动力学(MD)模拟,研究了DMF分子与全长Aβ42纤维状六聚体的详细相互作用以及由此产生的结构变化。从DMF与Aβ原纤维之间最小距离为2 nm的不同初始状态开始,我们的MD模拟表明,DMF通过缓慢和快速结合过程与Aβ原纤维结合。确定了三个主要结合位点:中央疏水核心(CHC)位点(17LVFFA21)、转角位点(27NKGAI31)以及由最小侧链残基甘氨酸和疏水残基组成的C端β折叠位点(31IIGLMVGGVVI41)。结合能分析揭示了π-堆积相互作用的重要性,特别是在CHC位点、疏水相互作用和曲率匹配方面。令人惊讶的是,我们发现DMF与转角区域的结合会破坏对Aβ纤维化很重要的D23 - K28盐桥。这些结果为富勒烯与Aβ原纤维的结合机制提供了分子层面的见解,并为使用富勒烯衍生物治疗AD的药物设计提供了新途径。
Phys Chem Chem Phys. 2016-5-14
Phys Chem Chem Phys. 2018-6-27
Phys Chem Chem Phys. 2014-10-7
Phys Chem Chem Phys. 2024-6-12
J Nanotheranostics. 2024-3
Chem Soc Rev. 2024-1-2
RSC Adv. 2018-11-27
Biophys Physicobiol. 2019-11-29