Suppr超能文献

无铁芬顿-like 体系在高级氧化工艺中活化 H2O2 的研究综述。

Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes.

机构信息

School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea.

School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea.

出版信息

J Hazard Mater. 2014 Jun 30;275:121-35. doi: 10.1016/j.jhazmat.2014.04.054. Epub 2014 May 2.

Abstract

Iron-catalyzed hydrogen peroxide decomposition for in situ generation of hydroxyl radicals (HO(•)) has been extensively developed as advanced oxidation processes (AOPs) for environmental applications. A variety of catalytic iron species constituting metal salts (in Fe(2+) or Fe(3+) form), metal oxides (e.g., Fe2O3, Fe3O4), and zero-valent metal (Fe(0)) have been exploited for chemical (classical Fenton), photochemical (photo-Fenton) and electrochemical (electro-Fenton) degradation pathways. However, the requirement of strict acidic conditions to prevent iron precipitation still remains the bottleneck for iron-based AOPs. In this article, we present a thorough review of alternative non-iron Fenton catalysts and their reactivity towards hydrogen peroxide activation. Elements with multiple redox states (like chromium, cerium, copper, cobalt, manganese and ruthenium) all directly decompose H2O2 into HO(•) through conventional Fenton-like pathways. The in situ formation of H2O2 and decomposition into HO(•) can be also achieved using electron transfer mechanism in zero-valent aluminum/O2 system. Although these Fenton systems (except aluminum) work efficiently even at neutral pH, the H2O2 activation mechanism is very specific to the nature of the catalyst and critically depends on its composition. This review describes in detail the complex mechanisms and emphasizes on practical limitations influencing their environmental applications.

摘要

铁催化过氧化氢分解原位生成羟基自由基(HO(•))已被广泛开发为环境应用的高级氧化工艺(AOPs)。各种催化铁物种构成金属盐(Fe(2+)或 Fe(3+)形式)、金属氧化物(例如 Fe2O3、Fe3O4)和零价金属(Fe(0))已被用于化学(经典芬顿)、光化学(光芬顿)和电化学(电芬顿)降解途径。然而,为了防止铁沉淀而需要严格的酸性条件仍然是基于铁的 AOP 的瓶颈。本文全面综述了替代非铁芬顿催化剂及其对过氧化氢活化的反应性。具有多种氧化还原态的元素(如铬、铈、铜、钴、锰和钌)都通过传统的芬顿样途径直接将 H2O2 分解为 HO(•)。在零价铝/O2 体系中,也可以通过电子转移机制原位形成 H2O2 并将其分解为 HO(•)。尽管这些芬顿体系(除铝外)即使在中性 pH 下也能有效工作,但 H2O2 活化机制非常特定于催化剂的性质,并严重依赖于其组成。本综述详细描述了复杂的机制,并强调了影响其环境应用的实际限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验