1] Sorbonne Universités, UPMC Univ Paris 06, UMR 8222, LECOB, Observatoire Océanologique, Banyuls-sur-Mer, France [2] CNRS, UMR 8222, LECOB, Observatoire Océanologique, Banyuls-sur-Mer, France.
1] CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, Perpignan, France [2] Univ. Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, Perpignan, France.
ISME J. 2014 Nov;8(11):2327-38. doi: 10.1038/ismej.2014.86. Epub 2014 May 23.
Microbial-driven organic matter (OM) degradation is a cornerstone of benthic community functioning, but little is known about the relation between OM and community composition. Here we use Rhône prodelta sediments to test the hypothesis that OM quality and source are fundamental structuring factors for bacterial communities in benthic environments. Sampling was performed on four occasions corresponding to contrasting river-flow regimes, and bacterial communities from seven different depths were analyzed by pyrosequencing of 16S rRNA gene amplicons. The sediment matrix was characterized using over 20 environmental variables including bulk parameters (for example, total nitrogen, carbon, OM, porosity and particle size), as well as parameters describing the OM quality and source (for example, pigments, total lipids and amino acids and δ(13)C), and molecular-level biomarkers like fatty acids. Our results show that the variance of the microbial community was best explained by δ(13)C values, indicative of the OM source, and the proportion of saturated or polyunsaturated fatty acids, describing OM lability. These parameters were traced back to seasonal differences in the river flow, delivering OM of different quality and origin, and were directly associated with several frequent bacterial operational taxonomic units. However, the contextual parameters, which explained at most 17% of the variance, were not always the key for understanding the community assembly. Co-occurrence and phylogenetic diversity analysis indicated that bacteria-bacteria interactions were also significant. In conclusion, the drivers structuring the microbial community changed with time but remain closely linked with the river OM input.
微生物驱动的有机质(OM)降解是底栖群落功能的基石,但人们对 OM 与群落组成之间的关系知之甚少。在这里,我们使用罗纳河三角洲沉积物来检验这样一个假设,即 OM 的质量和来源是底栖环境中细菌群落的基本结构因素。在四次采样中,分别对应于不同的河流流量状况,对来自七个不同深度的细菌群落进行了 16S rRNA 基因扩增子的焦磷酸测序分析。利用 20 多个环境变量对沉积物基质进行了描述,包括总氮、碳、OM、孔隙度和粒径等批量参数,以及描述 OM 质量和来源的参数(如色素、总脂质和氨基酸以及 δ(13)C),以及脂肪酸等分子水平生物标志物。我们的结果表明,微生物群落的方差最好用 δ(13)C 值来解释,这表明了 OM 的来源,以及饱和或多不饱和脂肪酸的比例,这些比例描述了 OM 的不稳定性。这些参数可以追溯到河流流量的季节性差异,输送不同质量和来源的 OM,并与几个频繁出现的细菌操作分类单位直接相关。然而,解释方差最多为 17%的上下文参数并不总是理解群落组装的关键。共现和系统发育多样性分析表明,细菌-细菌相互作用也很重要。总之,结构微生物群落的驱动因素随时间而变化,但仍与河流 OM 输入密切相关。