Anderson Lyndsey L, Thompson Christopher H, Hawkins Nicole A, Nath Ravi D, Petersohn Adam A, Rajamani Sridharan, Bush William S, Frankel Wayne N, Vanoye Carlos G, Kearney Jennifer A, George Alfred L
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, U.S.A.
Epilepsia. 2014 Aug;55(8):1274-83. doi: 10.1111/epi.12657. Epub 2014 May 23.
Evidence from basic neurophysiology and molecular genetics has implicated persistent sodium current conducted by voltage-gated sodium (NaV ) channels as a contributor to the pathogenesis of epilepsy. Many antiepileptic drugs target NaV channels and modulate neuronal excitability, mainly by a use-dependent block of transient sodium current, although suppression of persistent current may also contribute to the efficacy of these drugs. We hypothesized that a drug or compound capable of preferential inhibition of persistent sodium current would have antiepileptic activity.
We examined the antiepileptic activity of two selective persistent sodium current blockers ranolazine, a U.S. Food and Drug Administration (FDA)-approved drug for treatment of angina pectoris, and GS967, a novel compound with more potent effects on persistent current, in the epileptic Scn2a(Q54) mouse model. We also examined the effect of GS967 in the maximal electroshock model and evaluated effects of the compound on neuronal excitability, propensity for hilar neuron loss, development of mossy fiber sprouting, and survival of Scn2a(Q54) mice.
We found that ranolazine was capable of reducing seizure frequency by approximately 50% in Scn2a(Q54) mice. The more potent persistent current blocker GS967 reduced seizure frequency by >90% in Scn2a(Q54) mice and protected against induced seizures in the maximal electroshock model. GS967 greatly attenuated abnormal spontaneous action potential firing in pyramidal neurons acutely isolated from Scn2a(Q54) mice. In addition to seizure suppression in vivo, GS967 treatment greatly improved the survival of Scn2a(Q54) mice, prevented hilar neuron loss, and suppressed the development of hippocampal mossy fiber sprouting.
Our findings indicate that the selective persistent sodium current blocker GS967 has potent antiepileptic activity and that this compound could inform development of new agents.
基础神经生理学和分子遗传学的证据表明,电压门控钠(NaV)通道传导的持续性钠电流与癫痫的发病机制有关。许多抗癫痫药物靶向NaV通道并调节神经元兴奋性,主要通过对瞬时钠电流的使用依赖性阻滞,尽管抑制持续性电流也可能有助于这些药物的疗效。我们推测,一种能够优先抑制持续性钠电流的药物或化合物将具有抗癫痫活性。
我们在癫痫性Scn2a(Q54)小鼠模型中研究了两种选择性持续性钠电流阻滞剂雷诺嗪(一种美国食品药品监督管理局(FDA)批准用于治疗心绞痛的药物)和GS967(一种对持续性电流具有更强作用的新型化合物)的抗癫痫活性。我们还研究了GS967在最大电休克模型中的作用,并评估了该化合物对神经元兴奋性、海马 hilar 神经元丢失倾向、苔藓纤维发芽的发展以及Scn2a(Q54)小鼠存活的影响。
我们发现雷诺嗪能够使Scn2a(Q54)小鼠的癫痫发作频率降低约50%。更强效的持续性电流阻滞剂GS967使Scn2a(Q54)小鼠的癫痫发作频率降低>90%,并在最大电休克模型中预防了诱发的癫痫发作。GS967极大地减弱了从Scn2a(Q54)小鼠急性分离的锥体神经元中异常的自发动作电位发放。除了在体内抑制癫痫发作外,GS967治疗还显著提高了Scn2a(Q54)小鼠的存活率,预防了海马hilar神经元丢失,并抑制了海马苔藓纤维发芽的发展。
我们的研究结果表明,选择性持续性钠电流阻滞剂GS967具有强大的抗癫痫活性,该化合物可为新型药物的开发提供参考。