Raimi-Abraham Bahijja Tolulope, Mahalingam Suntharavathanan, Edirisinghe Mohan, Craig Duncan Q M
University College London, School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
Mater Sci Eng C Mater Biol Appl. 2014 Jun 1;39:168-76. doi: 10.1016/j.msec.2014.02.016. Epub 2014 Feb 16.
The ability to generate nanofibres useful for biomedical applications at bench and at a larger scale is a significant manufacturing challenge. In this study, we demonstrate that it is possible to generate nanofibre meshes of poly(N-vinylpyrrolidone) (PVP) using pressurised gyration. The effects of altering polymer molecular weight and concentration on fibre morphology and size have been investigated, with identification of minimum values for both parameters for successful fibre fabrication. In addition, we note that changing the molecular weight may result in changes to the Fourier Transform Infrared (FTIR) spectra associated with changes in fibre intramolecular bond strength and arrangement. Overall the study has demonstrated that pressure gyration represents a feasible means of producing nanofibres (470-970nm) on a scale commensurate with commercial viability and have identified key parameters that influence mesh structure.
在实验室规模和更大规模上生产适用于生物医学应用的纳米纤维的能力是一项重大的制造挑战。在本研究中,我们证明了使用加压旋转法可以制备聚(N-乙烯基吡咯烷酮)(PVP)纳米纤维网。研究了改变聚合物分子量和浓度对纤维形态和尺寸的影响,确定了成功制备纤维所需的这两个参数的最小值。此外,我们注意到改变分子量可能会导致与纤维分子内键强度和排列变化相关的傅里叶变换红外(FTIR)光谱发生变化。总体而言,该研究表明加压旋转法是一种在与商业可行性相称的规模上生产纳米纤维(470-970nm)的可行方法,并确定了影响网结构的关键参数。