Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom.
Institute of Science and Technology, Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara 06800, Turkey.
ACS Biomater Sci Eng. 2022 Mar 14;8(3):1290-1300. doi: 10.1021/acsbiomaterials.1c01555. Epub 2022 Mar 1.
Silk fibroin (SF) fibers are highly regarded in tissue engineering because of their outstanding biocompatibility and tunable properties. A challenge remains in overcoming the trade-off between functioning and biocompatible fibers and the use of cytotoxic, environmentally harmful organic solvents in their processing and formation. The aim of this research was to produce biocompatible SF fibers without the use of cytotoxic solvents, via pressurized gyration (PG). Aqueous SF was blended with poly(ethylene oxide) (PEO) in ratios of 80:20 (labeled SF-PEO 80:20) and 90:10 (labeled SF-PEO 90:10) and spun into fibers using PG, assisted by a range of applied pressures and heat. Pure PEO (labeled PEO-Aq) and SF solubilized in hexafluoro-isopropanol (HFIP) (labeled SF-HFIP) and aqueous SF (labeled SF-Aq) were also prepared for comparison. The resulting fibers were characterized using SEM, TGA, and FTIR. Their in vitro cell behavior was analyzed using a Live/Dead assay and cell proliferation studies with the SaOS-2 human bone osteosarcoma cell line (ATCC, HTB-85) and human fetal osteoblast cells (hFob) (ATCC, CRL-11372) in 2D culture conditions. Fibers in the micrometer range were successfully produced using SF-PEO blends, SF-HFIP, and PEO-Aq. The fiber thickness ranged from 0.71 ± 0.17 μm for fibers produced using SF-PEO 90:10 with no applied pressure to 2.10 ± 0.78 μm for fibers produced using SF-PEO 80:10 with 0.3 MPa applied pressure. FTIR confirmed the presence of SF via amide I and amide II bands in the blend fibers because of a change in structural conformation. No difference was observed in thermogravimetric properties among varying pressures and no significant difference in fiber diameters for pressures. SaOS-2 cells and hFOb cell studies demonstrated higher cell densities and greater live cells on SF-PEO blends when compared to SF-HFIP. This research demonstrates a scalable and green method of producing SF-based constructs for use in bone-tissue engineering applications.
丝素纤维(SF)由于其出色的生物相容性和可调节的性能,在组织工程中备受关注。然而,目前仍然存在一个挑战,即如何在发挥纤维功能和保持生物相容性之间取得平衡,同时避免使用细胞毒性、对环境有害的有机溶剂来处理和形成纤维。本研究旨在通过加压旋转(PG)生产出具有生物相容性的 SF 纤维,而无需使用细胞毒性溶剂。将 SF 与聚环氧乙烷(PEO)以 80:20(标记为 SF-PEO 80:20)和 90:10(标记为 SF-PEO 90:10)的比例混合,并在一定的压力和温度下通过 PG 纺成纤维。此外,还制备了纯 PEO(标记为 PEO-Aq)、SF 溶解在六氟异丙醇(HFIP)中的纤维(标记为 SF-HFIP)和 SF 溶解在水溶液中的纤维(标记为 SF-Aq),用于比较。通过 SEM、TGA 和 FTIR 对所得纤维进行了表征。使用活/死测定法和 SaOS-2 人骨肉瘤细胞系(ATCC,HTB-85)和人胎成骨细胞(hFob)(ATCC,CRL-11372)在 2D 培养条件下的细胞增殖研究分析了它们的体外细胞行为。使用 SF-PEO 共混物、SF-HFIP 和 PEO-Aq 成功制备了微米级纤维。纤维厚度范围从使用无压力的 SF-PEO 90:10 制备的纤维的 0.71 ± 0.17 μm 到使用施加 0.3 MPa 压力的 SF-PEO 80:10 制备的纤维的 2.10 ± 0.78 μm。FTIR 通过酰胺 I 和酰胺 II 带证实了混合纤维中 SF 的存在,因为结构构象发生了变化。在不同压力下,热重分析(TGA)特性没有差异,纤维直径也没有显著差异。SaOS-2 细胞和 hFOb 细胞研究表明,与 SF-HFIP 相比,SF-PEO 共混物上的细胞密度更高,活细胞更多。这项研究展示了一种可扩展且环保的生产 SF 基构建体的方法,可用于骨组织工程应用。
Biomacromolecules. 2002
ACS Appl Mater Interfaces. 2016-2-10
Biomacromolecules. 2004
Mater Sci Eng C Mater Biol Appl. 2019-1-15
Biomaterials. 2006-6
Colloids Surf B Biointerfaces. 2016-3-1
Polymers (Basel). 2023-3-1
Appl Phys Rev. 2020-3
ACS Biomater Sci Eng. 2016-11-14
Mater Sci Eng C Mater Biol Appl. 2020-9
Int J Biol Macromol. 2020-10-15
Int J Biol Macromol. 2020-10-1
Mater Sci Eng C Mater Biol Appl. 2019-12-6
Nat Mater. 2019-12-16