文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于组织工程的生物相容性丝素蛋白-聚氧化乙烯纤维的绿色一锅法的简便制备。

Facile One-Pot Method for All Aqueous Green Formation of Biocompatible Silk Fibroin-Poly(Ethylene Oxide) Fibers for Use in Tissue Engineering.

机构信息

Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom.

Institute of Science and Technology, Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara 06800, Turkey.

出版信息

ACS Biomater Sci Eng. 2022 Mar 14;8(3):1290-1300. doi: 10.1021/acsbiomaterials.1c01555. Epub 2022 Mar 1.


DOI:10.1021/acsbiomaterials.1c01555
PMID:35232011
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9096800/
Abstract

Silk fibroin (SF) fibers are highly regarded in tissue engineering because of their outstanding biocompatibility and tunable properties. A challenge remains in overcoming the trade-off between functioning and biocompatible fibers and the use of cytotoxic, environmentally harmful organic solvents in their processing and formation. The aim of this research was to produce biocompatible SF fibers without the use of cytotoxic solvents, via pressurized gyration (PG). Aqueous SF was blended with poly(ethylene oxide) (PEO) in ratios of 80:20 (labeled SF-PEO 80:20) and 90:10 (labeled SF-PEO 90:10) and spun into fibers using PG, assisted by a range of applied pressures and heat. Pure PEO (labeled PEO-Aq) and SF solubilized in hexafluoro-isopropanol (HFIP) (labeled SF-HFIP) and aqueous SF (labeled SF-Aq) were also prepared for comparison. The resulting fibers were characterized using SEM, TGA, and FTIR. Their in vitro cell behavior was analyzed using a Live/Dead assay and cell proliferation studies with the SaOS-2 human bone osteosarcoma cell line (ATCC, HTB-85) and human fetal osteoblast cells (hFob) (ATCC, CRL-11372) in 2D culture conditions. Fibers in the micrometer range were successfully produced using SF-PEO blends, SF-HFIP, and PEO-Aq. The fiber thickness ranged from 0.71 ± 0.17 μm for fibers produced using SF-PEO 90:10 with no applied pressure to 2.10 ± 0.78 μm for fibers produced using SF-PEO 80:10 with 0.3 MPa applied pressure. FTIR confirmed the presence of SF via amide I and amide II bands in the blend fibers because of a change in structural conformation. No difference was observed in thermogravimetric properties among varying pressures and no significant difference in fiber diameters for pressures. SaOS-2 cells and hFOb cell studies demonstrated higher cell densities and greater live cells on SF-PEO blends when compared to SF-HFIP. This research demonstrates a scalable and green method of producing SF-based constructs for use in bone-tissue engineering applications.

摘要

丝素纤维(SF)由于其出色的生物相容性和可调节的性能,在组织工程中备受关注。然而,目前仍然存在一个挑战,即如何在发挥纤维功能和保持生物相容性之间取得平衡,同时避免使用细胞毒性、对环境有害的有机溶剂来处理和形成纤维。本研究旨在通过加压旋转(PG)生产出具有生物相容性的 SF 纤维,而无需使用细胞毒性溶剂。将 SF 与聚环氧乙烷(PEO)以 80:20(标记为 SF-PEO 80:20)和 90:10(标记为 SF-PEO 90:10)的比例混合,并在一定的压力和温度下通过 PG 纺成纤维。此外,还制备了纯 PEO(标记为 PEO-Aq)、SF 溶解在六氟异丙醇(HFIP)中的纤维(标记为 SF-HFIP)和 SF 溶解在水溶液中的纤维(标记为 SF-Aq),用于比较。通过 SEM、TGA 和 FTIR 对所得纤维进行了表征。使用活/死测定法和 SaOS-2 人骨肉瘤细胞系(ATCC,HTB-85)和人胎成骨细胞(hFob)(ATCC,CRL-11372)在 2D 培养条件下的细胞增殖研究分析了它们的体外细胞行为。使用 SF-PEO 共混物、SF-HFIP 和 PEO-Aq 成功制备了微米级纤维。纤维厚度范围从使用无压力的 SF-PEO 90:10 制备的纤维的 0.71 ± 0.17 μm 到使用施加 0.3 MPa 压力的 SF-PEO 80:10 制备的纤维的 2.10 ± 0.78 μm。FTIR 通过酰胺 I 和酰胺 II 带证实了混合纤维中 SF 的存在,因为结构构象发生了变化。在不同压力下,热重分析(TGA)特性没有差异,纤维直径也没有显著差异。SaOS-2 细胞和 hFOb 细胞研究表明,与 SF-HFIP 相比,SF-PEO 共混物上的细胞密度更高,活细胞更多。这项研究展示了一种可扩展且环保的生产 SF 基构建体的方法,可用于骨组织工程应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f108/9096800/e7684c68e5e4/ab1c01555_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f108/9096800/2d3410a86bf2/ab1c01555_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f108/9096800/88424911ca94/ab1c01555_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f108/9096800/1594909829f8/ab1c01555_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f108/9096800/d90a9a6fcfb2/ab1c01555_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f108/9096800/294d55eeff41/ab1c01555_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f108/9096800/e7684c68e5e4/ab1c01555_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f108/9096800/2d3410a86bf2/ab1c01555_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f108/9096800/88424911ca94/ab1c01555_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f108/9096800/1594909829f8/ab1c01555_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f108/9096800/d90a9a6fcfb2/ab1c01555_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f108/9096800/294d55eeff41/ab1c01555_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f108/9096800/e7684c68e5e4/ab1c01555_0006.jpg

相似文献

[1]
Facile One-Pot Method for All Aqueous Green Formation of Biocompatible Silk Fibroin-Poly(Ethylene Oxide) Fibers for Use in Tissue Engineering.

ACS Biomater Sci Eng. 2022-3-14

[2]
Electrospinning Bombyx mori silk with poly(ethylene oxide).

Biomacromolecules. 2002

[3]
Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions.

ACS Appl Mater Interfaces. 2016-2-10

[4]
Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide).

Biomacromolecules. 2004

[5]
Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures.

Biomacromolecules. 2008-4

[6]
Coaxial electrospinning of composite mats comprised of core/shell poly(methyl methacrylate)/silk fibroin fibers for tissue engineering applications.

J Mech Behav Biomed Mater. 2022-4

[7]
Diethyldithiocarbamate/silk fibroin/polyethylene oxide nanofibrous for cancer therapy: Fabrication, characterization and in vitro evaluation.

Int J Biol Macromol. 2021-12-15

[8]
Ultrasound sonication prior to electrospinning tailors silk fibroin/PEO membranes for periodontal regeneration.

Mater Sci Eng C Mater Biol Appl. 2019-1-15

[9]
Electrospun silk-BMP-2 scaffolds for bone tissue engineering.

Biomaterials. 2006-6

[10]
Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect.

Colloids Surf B Biointerfaces. 2016-3-1

引用本文的文献

[1]
Instantaneous Formation of Silk Protein Aerosols and Fibers with a Portable Spray Device Under Ambient Conditions.

Adv Mater Technol. 2023-4-6

[2]
Recent Advances in Centrifugal Spinning and Their Applications in Tissue Engineering.

Polymers (Basel). 2023-3-1

本文引用的文献

[1]
Engineering Silk Materials: From Natural Spinning to Artificial Processing.

Appl Phys Rev. 2020-3

[2]
Solvent-Free Fabrication of Carbon Nanotube/Silk Fibroin Electrospun Matrices for Enhancing Cardiomyocyte Functionalities.

ACS Biomater Sci Eng. 2020-3-9

[3]
Direct Formation of Silk Nanoparticles for Drug Delivery.

ACS Biomater Sci Eng. 2016-11-14

[4]
In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering.

Mater Sci Eng C Mater Biol Appl. 2020-9

[5]
Biodegradable engineered fiber scaffolds fabricated by electrospinning for periodontal tissue regeneration.

J Biomater Appl. 2021-7

[6]
Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold.

Int J Biol Macromol. 2020-10-15

[7]
Soy protein isolate supplemented silk fibroin nanofibers for skin tissue regeneration: Fabrication and characterization.

Int J Biol Macromol. 2020-10-1

[8]
Regenerative medicine and drug delivery: Progress via electrospun biomaterials.

Mater Sci Eng C Mater Biol Appl. 2019-12-6

[9]
Effect of process parameters on additive-free electrospinning of regenerated silk fibroin nonwovens.

Bioact Mater. 2020-2-23

[10]
Thermoplastic moulding of regenerated silk.

Nat Mater. 2019-12-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索