Suppr超能文献

用于乳腺癌中siRNA递送的非病毒纳米载体。

Non-viral nanocarriers for siRNA delivery in breast cancer.

作者信息

Zhang Jing, Li Xiang, Huang Leaf

机构信息

Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China.

Division of Molecular Pharmaceutics and Center of Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

J Control Release. 2014 Sep 28;190:440-50. doi: 10.1016/j.jconrel.2014.05.037. Epub 2014 May 27.

Abstract

Breast cancer is the most frequently diagnosed malignancy in American women. While significant progress has been made in the development of modern diagnostic tools and surgical treatments, only marginal improvements have been achieved with relapsed metastatic breast cancer. Small interfering RNAs (siRNAs) mediate gene silencing of a target protein by disrupting messenger RNAs in an efficient and sequence-specific manner. One application of this technology is the knockdown of genes responsible for tumorigenesis, including those driving oncogenesis, survival, proliferation and death of cells, angiogenesis, invasion and metastasis, and resistance to treatment. Non-viral nanocarriers have attracted attention based on their potential for targeted delivery of siRNA and efficient gene silencing without toxicity. Here, we review promising, non-viral delivery strategies employing liposomes, nanoparticles and inorganic materials in breast cancer.

摘要

乳腺癌是美国女性中最常被诊断出的恶性肿瘤。尽管在现代诊断工具和手术治疗的发展方面取得了重大进展,但复发性转移性乳腺癌仅取得了微小的改善。小干扰RNA(siRNA)通过以高效且序列特异性的方式破坏信使RNA来介导靶蛋白的基因沉默。这项技术的一个应用是敲低负责肿瘤发生的基因,包括那些驱动肿瘤发生、细胞存活、增殖和死亡、血管生成、侵袭和转移以及耐药性的基因。非病毒纳米载体因其具有靶向递送siRNA和高效基因沉默且无毒性的潜力而受到关注。在此,我们综述了在乳腺癌中采用脂质体、纳米颗粒和无机材料的有前景的非病毒递送策略。

相似文献

1
Non-viral nanocarriers for siRNA delivery in breast cancer.
J Control Release. 2014 Sep 28;190:440-50. doi: 10.1016/j.jconrel.2014.05.037. Epub 2014 May 27.
2
Multifunctional peptide-lipid nanocomplexes for efficient targeted delivery of DNA and siRNA into breast cancer cells.
Acta Biomater. 2017 Sep 1;59:257-268. doi: 10.1016/j.actbio.2017.06.032. Epub 2017 Jun 24.
3
Knockdown of antiapoptotic genes in breast cancer cells by siRNA loaded into hybrid nanoparticles.
Nanotechnology. 2017 Apr 28;28(17):175101. doi: 10.1088/1361-6528/aa6283. Epub 2017 Feb 23.
4
siRNA delivery for the treatment of ovarian cancer.
Methods. 2013 Sep 15;63(2):95-100. doi: 10.1016/j.ymeth.2013.01.007. Epub 2013 Feb 10.
5
EF2-kinase targeted cobalt-ferrite siRNA-nanotherapy suppresses -mutated breast cancer.
Nanomedicine (Lond). 2019 Sep;14(17):2315-2338. doi: 10.2217/nnm-2019-0132. Epub 2019 Aug 21.
6
Silencing of BCSG1 with specific siRNA via nanocarriers for breast cancer treatment.
Bull Cancer. 2021 Mar;108(3):323-332. doi: 10.1016/j.bulcan.2020.10.022. Epub 2021 Jan 8.
7
Efficient nanocarriers of siRNA therapeutics for cancer treatment.
Transl Res. 2019 Dec;214:62-91. doi: 10.1016/j.trsl.2019.07.006. Epub 2019 Jul 22.
8
Inorganic nanocarriers for siRNA delivery for cancer treatments.
Biomed Mater. 2024 Jan 16;19(2). doi: 10.1088/1748-605X/ad1baf.
9
Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma.
World J Gastroenterol. 2015 Nov 14;21(42):12022-41. doi: 10.3748/wjg.v21.i42.12022.

引用本文的文献

1
MicroRNA-targeted nanoparticle delivery systems for cancer therapy: current status and future prospects.
Nanomedicine (Lond). 2025 May;20(10):1181-1194. doi: 10.1080/17435889.2025.2492542. Epub 2025 Apr 15.
2
Advanced siRNA delivery in combating hepatitis B virus: mechanistic insights and recent updates.
J Nanobiotechnology. 2024 Nov 30;22(1):745. doi: 10.1186/s12951-024-03004-3.
3
Therapeutic delivery of siRNA for the management of breast cancer and triple-negative breast cancer.
Ther Deliv. 2024;15(11):871-891. doi: 10.1080/20415990.2024.2400044. Epub 2024 Sep 25.
5
Hybrid Liposome-MSN System with Co-Delivering Potential Effective Against Multidrug-Resistant Tumor Targets in Mice Model.
Int J Nanomedicine. 2024 Sep 2;19:8949-8970. doi: 10.2147/IJN.S472276. eCollection 2024.
7
Osteoporosis therapy using nanoparticles: a review.
Ann Med Surg (Lond). 2023 Nov 1;86(1):284-291. doi: 10.1097/MS9.0000000000001467. eCollection 2024 Jan.
8
Biomaterial-based gene therapy.
MedComm (2020). 2023 Jun 3;4(3):e259. doi: 10.1002/mco2.259. eCollection 2023 Jun.
9
Development of lipid nanoparticles and liposomes reference materials (II): cytotoxic profiles.
Sci Rep. 2022 Oct 27;12(1):18071. doi: 10.1038/s41598-022-23013-2.
10
Insights on prospects of nano-siRNA based approaches in treatment of Cancer.
Front Pharmacol. 2022 Aug 25;13:985670. doi: 10.3389/fphar.2022.985670. eCollection 2022.

本文引用的文献

1
siRNA Treatment: "A Sword-in-the-Stone" for Acute Brain Injuries.
Genes (Basel). 2013 Sep 5;4(3):435-56. doi: 10.3390/genes4030435.
2
Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent.
Colloids Surf B Biointerfaces. 2014 Apr 1;116:652-7. doi: 10.1016/j.colsurfb.2013.10.038. Epub 2013 Nov 1.
3
Emerging nanotherapeutic strategies in breast cancer.
Breast. 2014 Feb;23(1):10-8. doi: 10.1016/j.breast.2013.10.006. Epub 2013 Nov 8.
4
A review of ligand tethered surface engineered carbon nanotubes.
Biomaterials. 2014 Jan;35(4):1267-83. doi: 10.1016/j.biomaterials.2013.10.032. Epub 2013 Nov 7.
5
Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals.
Adv Drug Deliv Rev. 2013 Dec;65(15):2023-33. doi: 10.1016/j.addr.2013.10.003. Epub 2013 Oct 31.
6
Rigid nanoparticle-based delivery of anti-cancer siRNA: challenges and opportunities.
Biotechnol Adv. 2014 Jul-Aug;32(4):831-43. doi: 10.1016/j.biotechadv.2013.08.020. Epub 2013 Sep 5.
7
Effective response of doxorubicin-sensitive and -resistant breast cancer cells to combinational siRNA therapy.
J Control Release. 2013 Nov 28;172(1):219-228. doi: 10.1016/j.jconrel.2013.08.012. Epub 2013 Aug 30.
9
53BP1 is a novel regulator of angiogenesis in breast cancer.
Cancer Sci. 2013 Nov;104(11):1420-6. doi: 10.1111/cas.12247. Epub 2013 Sep 5.
10
PTK6 activation at the membrane regulates epithelial-mesenchymal transition in prostate cancer.
Cancer Res. 2013 Sep 1;73(17):5426-37. doi: 10.1158/0008-5472.CAN-13-0443. Epub 2013 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验