文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

小干扰 RNA(siRNA)及其共递系统在胰腺癌治疗中的临床前和临床应用。

Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy.

机构信息

Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran.

Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun 7319866451, Iran.

出版信息

Cells. 2021 Nov 29;10(12):3348. doi: 10.3390/cells10123348.


DOI:10.3390/cells10123348
PMID:34943856
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8699513/
Abstract

Pancreatic cancer (PC) is one of the leading causes of death and is the fourth most malignant tumor in men. The epigenetic and genetic alterations appear to be responsible for development of PC. Small interfering RNA (siRNA) is a powerful genetic tool that can bind to its target and reduce expression level of a specific gene. The various critical genes involved in PC progression can be effectively targeted using diverse siRNAs. Moreover, siRNAs can enhance efficacy of chemotherapy and radiotherapy in inhibiting PC progression. However, siRNAs suffer from different off target effects and their degradation by enzymes in serum can diminish their potential in gene silencing. Loading siRNAs on nanoparticles can effectively protect them against degradation and can inhibit off target actions by facilitating targeted delivery. This can lead to enhanced efficacy of siRNAs in PC therapy. Moreover, different kinds of nanoparticles such as polymeric nanoparticles, lipid nanoparticles and metal nanostructures have been applied for optimal delivery of siRNAs that are discussed in this article. This review also reveals that how naked siRNAs and their delivery systems can be exploited in treatment of PC and as siRNAs are currently being applied in clinical trials, significant progress can be made by translating the current findings into the clinical settings.

摘要

胰腺癌(PC)是主要死因之一,也是男性中第四大恶性肿瘤。表观遗传和遗传改变似乎是导致 PC 发生的原因。小干扰 RNA(siRNA)是一种强大的遗传工具,可与靶标结合并降低特定基因的表达水平。使用各种 siRNA 可以有效靶向参与 PC 进展的各种关键基因。此外,siRNA 可以增强化疗和放疗抑制 PC 进展的疗效。然而,siRNA 存在不同的脱靶效应,其在血清中被酶降解会降低其基因沉默的潜力。将 siRNA 加载到纳米颗粒上可以有效地保护它们免受降解,并通过促进靶向递送来抑制脱靶作用。这可以提高 siRNA 在 PC 治疗中的疗效。此外,已经应用了不同种类的纳米颗粒,如聚合物纳米颗粒、脂质纳米颗粒和金属纳米结构,以优化 siRNA 的递送来进行讨论。本文还揭示了裸 siRNA 及其递送系统如何被用于 PC 的治疗,并且由于 siRNA 目前正在临床试验中应用,将当前的研究结果转化为临床应用可以取得重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/8699513/3deba80dadb3/cells-10-03348-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/8699513/940bc5d8d8f9/cells-10-03348-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/8699513/dcdf81d35f0a/cells-10-03348-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/8699513/ffe409c94556/cells-10-03348-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/8699513/c156cfbed026/cells-10-03348-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/8699513/3deba80dadb3/cells-10-03348-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/8699513/940bc5d8d8f9/cells-10-03348-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/8699513/dcdf81d35f0a/cells-10-03348-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/8699513/ffe409c94556/cells-10-03348-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/8699513/c156cfbed026/cells-10-03348-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f86/8699513/3deba80dadb3/cells-10-03348-g005.jpg

相似文献

[1]
Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy.

Cells. 2021-11-29

[2]
Recent Progress of Small Interfering RNA Delivery on the Market and Clinical Stage.

Mol Pharm. 2024-5-6

[3]
Efficient nanocarriers of siRNA therapeutics for cancer treatment.

Transl Res. 2019-7-22

[4]
Assessment of In Vivo siRNA Delivery in Cancer Mouse Models.

Methods Mol Biol. 2016

[5]
Advances in siRNA delivery approaches in cancer therapy: challenges and opportunities.

Mol Biol Rep. 2023-11

[6]
Nanoparticle-based delivery system for application of siRNA in vivo.

Curr Drug Metab. 2010-2

[7]
Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges.

Acc Chem Res. 2012-5-8

[8]
Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach.

Int J Nanomedicine. 2019-5-2

[9]
Lysosomal Storage Disease-Associated Neuropathy: Targeting Stable Nucleic Acid Lipid Particle (SNALP)-Formulated siRNAs to the Brain as a Therapeutic Approach.

Int J Mol Sci. 2020-8-10

[10]
Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications.

Expert Opin Ther Targets. 2008-5

引用本文的文献

[1]
Multifunctional magnetic nanocapsules for dual delivery of siRNA and chemotherapy to MCF-7 cells (Breast cancer cells).

Naunyn Schmiedebergs Arch Pharmacol. 2025-6-27

[2]
Biological Nanocarriers in Cancer Therapy: Cutting Edge Innovations in Precision Drug Delivery.

Biomolecules. 2025-5-31

[3]
Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements.

Drug Deliv. 2024-12

[4]
Navigating Lipodystrophy: Insights from Laminopathies and Beyond.

Int J Mol Sci. 2024-7-23

[5]
Engineered bacterial outer membrane vesicles: a versatile bacteria-based weapon against gastrointestinal tumors.

Theranostics. 2024

[6]
A Comprehensive Review of Small Interfering RNAs (siRNAs): Mechanism, Therapeutic Targets, and Delivery Strategies for Cancer Therapy.

Int J Nanomedicine. 2023

[7]
Advances in siRNA delivery approaches in cancer therapy: challenges and opportunities.

Mol Biol Rep. 2023-11

[8]
Emergence of Small Interfering RNA-Based Gene Drugs for Various Diseases.

ACS Omega. 2023-6-1

[9]
Targeting Autophagy Using Long Non-Coding RNAs (LncRNAs): New Landscapes in the Arena of Cancer Therapeutics.

Cells. 2023-3-6

[10]
(Nano)platforms in bladder cancer therapy: Challenges and opportunities.

Bioeng Transl Med. 2022-6-17

本文引用的文献

[1]
Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects.

Drug Discov Today. 2022-2

[2]
Revealing the role of miRNA-489 as a new onco-suppressor factor in different cancers based on pre-clinical and clinical evidence.

Int J Biol Macromol. 2021-11-30

[3]
Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression.

Carbohydr Polym. 2021-11-15

[4]
Recent development of gene therapy for pancreatic cancer using non-viral nanovectors.

Biomater Sci. 2021-10-12

[5]
NEK2 inhibition triggers anti-pancreatic cancer immunity by targeting PD-L1.

Nat Commun. 2021-7-27

[6]
Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer.

Pharmacol Res. 2021-9

[7]
Blockade of CD73 using siRNA loaded chitosan lactate nanoparticles functionalized with TAT-hyaluronate enhances doxorubicin mediated cytotoxicity in cancer cells both in vitro and in vivo.

Int J Biol Macromol. 2021-9-1

[8]
A positive feedback regulatory loop involving the lncRNA PVT1 and HIF-1α in pancreatic cancer.

J Mol Cell Biol. 2021-12-6

[9]
Room for improvement in the treatment of pancreatic cancer: Novel opportunities from gene targeted therapy.

World J Gastroenterol. 2021-6-28

[10]
Celastrol Modulates Multiple Signaling Pathways to Inhibit Proliferation of Pancreatic Cancer via and Up-Regulation and and Down-Regulation.

Onco Targets Ther. 2021-6-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索