Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA.
Department of Neurology, Vanderbilt University, Nashville, TN 37232, USA.
Neurobiol Dis. 2014 Sep;69:215-24. doi: 10.1016/j.nbd.2014.05.013. Epub 2014 May 27.
A missense mutation in the GABAA receptor γ2L subunit, R177G, was reported in a family with complex febrile seizures (FS). To gain insight into the mechanistic basis for these genetic seizures, we explored how the R177G mutation altered the properties of recombinant α1β2γ2L GABAA receptors expressed in HEK293T cells. Using a combination of electrophysiology, flow cytometry, and immunoblotting, we found that the R177G mutation decreased GABA-evoked whole-cell current amplitudes by decreasing cell surface expression of α1β2γ2L receptors. This loss of receptor surface expression resulted from endoplasmic reticulum (ER) retention of mutant γ2L(R177G) subunits, which unlike wild-type γ2L subunits, were degraded by ER-associated degradation (ERAD). Interestingly, when compared to the condition of homozygous γ2L(R177G) subunit expression, disproportionately low levels of γ2L(R177G) subunits reached the cell surface with heterozygous expression, indicating that wild-type γ2L subunits possessed a competitive advantage over mutant γ2L(R177G) subunits for receptor assembly and/or forward trafficking. Inhibiting protein synthesis with cycloheximide demonstrated that the R177G mutation primarily decreased the stability of an intracellular pool of unassembled γ2L subunits, suggesting that the mutant γ2L(R177G) subunits competed poorly with wild-type γ2L subunits due to impaired subunit folding and/or oligomerization. Molecular modeling confirmed that the R177G mutation could disrupt intrasubunit salt bridges, thereby destabilizing secondary and tertiary structure of γ2L(R177G) subunits. These findings support an emerging body of literature implicating defects in GABAA receptor biogenesis in the pathogenesis of genetic epilepsies (GEs) and FS.
一个 GABAA 受体 γ2L 亚基的错义突变,R177G,在一个伴有复杂热性惊厥(FS)的家族中被报道。为了深入了解这些遗传癫痫(GEs)和 FS 的发病机制基础,我们探索了 R177G 突变如何改变在 HEK293T 细胞中表达的重组α1β2γ2L GABAA 受体的特性。我们使用电生理学、流式细胞术和免疫印迹的组合,发现 R177G 突变通过减少α1β2γ2L 受体的细胞表面表达,降低了 GABA 诱导的全细胞电流幅度。这种受体表面表达的丧失是由于突变 γ2L(R177G)亚基的内质网(ER)滞留,与野生型 γ2L 亚基不同,突变 γ2L(R177G)亚基被 ER 相关降解(ERAD)降解。有趣的是,与纯合 γ2L(R177G)亚基表达的情况相比,杂合表达时,突变 γ2L(R177G)亚基到达细胞表面的水平不成比例地低,表明野生型 γ2L 亚基相对于突变 γ2L(R177G)亚基在受体组装和/或正向运输方面具有竞争优势。用环己酰亚胺抑制蛋白质合成表明,R177G 突变主要降低了未组装 γ2L 亚基的细胞内池的稳定性,这表明突变 γ2L(R177G)亚基由于亚基折叠和/或寡聚化受损,与野生型 γ2L 亚基的竞争能力较差。分子建模证实,R177G 突变可以破坏亚基内盐桥,从而使 γ2L(R177G)亚基的二级和三级结构不稳定。这些发现支持了越来越多的文献,这些文献表明 GABAA 受体生物发生缺陷在遗传癫痫(GEs)和 FS 的发病机制中起作用。