Suppr超能文献

神经酰胺部分羟基的缺失会改变酿酒酵母中膜蛋白的侧向扩散。

Loss of hydroxyl groups from the ceramide moiety can modify the lateral diffusion of membrane proteins in S. cerevisiae.

作者信息

Uemura Satoshi, Shishido Fumi, Tani Motohiro, Mochizuki Takahiro, Abe Fumiyoshi, Inokuchi Jin-Ichi

机构信息

Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai 981-8558, Japan Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan.

Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai 981-8558, Japan.

出版信息

J Lipid Res. 2014 Jul;55(7):1343-56. doi: 10.1194/jlr.M048637. Epub 2014 May 29.

Abstract

In the yeast Saccharomyces cerevisiae, structural diversities of complex sphingolipids [inositol phosphorylceramide (IPC), mannosylinositol phosphorylceramide, and mannosyldiinositol phosphorylceramide] are often observed in the presence or absence of hydroxyl groups on the C-4 position of long-chain base (C4-OH) and the C-2 position of very long-chain fatty acids (C2-OH), but the biological significance of these groups remains unclear. Here, we evaluated cellular membrane fluidity in hydroxyl group-defective yeast mutants by fluorescence recovery after photobleaching. The lateral diffusion of enhanced green fluorescent protein-tagged hexose transporter 1 (Hxt1-EGFP) was influenced by the absence of C4-OH and/or C2-OH. Notably, the fluorescence recovery of Hxt1-EGFP was dramatically decreased in the sur2Δ mutant (absence of C4-OH) under the csg1Δcsh1Δ background, in which mannosylation of IPC is blocked leading to IPC accumulation, while the recovery in the scs7Δ mutant (absence of C2-OH) under the same background was modestly decreased. In addition, the amount of low affinity tryptophan transporter 1 (Tat1)-EGFP was markedly decreased in the sur2Δcsg1Δcsh1Δ mutant and accumulated in intracellular membranes in the scs7Δcsg1Δcsh1Δ mutant without altering its protein expression. These results suggest that C4-OH and C2-OH are most probably critical factors for maintaining membrane fluidity and proper turnover of membrane molecules in yeast containing complex sphingolipids with only one hydrophilic head group.

摘要

在酿酒酵母中,复杂鞘脂(肌醇磷酸神经酰胺、甘露糖基肌醇磷酸神经酰胺和甘露糖基二肌醇磷酸神经酰胺)的结构多样性通常在长链碱基C-4位置(C4-OH)和极长链脂肪酸C-2位置(C2-OH)存在或不存在羟基的情况下被观察到,但这些基团的生物学意义仍不清楚。在此,我们通过光漂白后的荧光恢复来评估羟基缺陷酵母突变体中的细胞膜流动性。增强型绿色荧光蛋白标记的己糖转运蛋白1(Hxt1-EGFP)的侧向扩散受C4-OH和/或C2-OH缺失的影响。值得注意的是,在csg1Δcsh1Δ背景下的sur2Δ突变体(缺乏C4-OH)中,Hxt1-EGFP的荧光恢复显著降低,其中IPC的甘露糖基化被阻断导致IPC积累,而在相同背景下的scs7Δ突变体(缺乏C2-OH)中,荧光恢复略有降低。此外,低亲和力色氨酸转运蛋白1(Tat1)-EGFP的量在sur2Δcsg1Δcsh1Δ突变体中显著减少,而在scs7Δcsg1Δcsh1Δ突变体中积累在细胞内膜中,且其蛋白质表达未改变。这些结果表明,C4-OH和C2-OH很可能是维持含有仅一个亲水头部基团的复杂鞘脂的酵母中膜流动性和膜分子正常周转的关键因素。

相似文献

1
Loss of hydroxyl groups from the ceramide moiety can modify the lateral diffusion of membrane proteins in S. cerevisiae.
J Lipid Res. 2014 Jul;55(7):1343-56. doi: 10.1194/jlr.M048637. Epub 2014 May 29.
3
Alteration of complex sphingolipid composition and its physiological significance in yeast Saccharomyces cerevisiae lacking vacuolar ATPase.
Microbiology (Reading). 2015 Dec;161(12):2369-83. doi: 10.1099/mic.0.000187. Epub 2015 Sep 23.
4
Yeast cells lacking the ARV1 gene harbor defects in sphingolipid metabolism. Complementation by human ARV1.
J Biol Chem. 2002 Sep 27;277(39):36152-60. doi: 10.1074/jbc.M206624200. Epub 2002 Jul 26.
5
6
Regulation of lipid biosynthesis in Saccharomyces cerevisiae by fumonisin B1.
J Biol Chem. 1995 Jun 2;270(22):13171-8. doi: 10.1074/jbc.270.22.13171.
7
Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p.
J Biol Chem. 1997 Nov 21;272(47):29704-10. doi: 10.1074/jbc.272.47.29704.
9
Yeast sphingolipids: metabolism and biology.
Biochim Biophys Acta. 2002 Dec 30;1585(2-3):163-71. doi: 10.1016/s1388-1981(02)00337-2.

引用本文的文献

1
Dysregulation of ceramide metabolism causes phytoceramide-dependent induction of the unfolded protein response.
Mol Biol Cell. 2024 Sep 1;35(9):ar117. doi: 10.1091/mbc.E24-03-0121. Epub 2024 Jul 18.
2
Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance.
RSC Med Chem. 2023 Jun 26;14(9):1603-1628. doi: 10.1039/d3md00151b. eCollection 2023 Sep 19.
5
Loss of tolerance to multiple environmental stresses due to limitation of structural diversity of complex sphingolipids.
Mol Biol Cell. 2022 Oct 1;33(12):ar105. doi: 10.1091/mbc.E22-04-0117. Epub 2022 Jul 27.
6
Ceramide Phosphoethanolamine as a Possible Marker of Periodontal Disease.
Membranes (Basel). 2022 Jun 25;12(7):655. doi: 10.3390/membranes12070655.
8
Biosynthesis of long chain base in sphingolipids in animals, plants and fungi.
Future Sci OA. 2019 Nov 14;6(1):FSO434. doi: 10.2144/fsoa-2019-0094.
10
Identification of Ganglioside GM3 Molecular Species in Human Serum Associated with Risk Factors of Metabolic Syndrome.
PLoS One. 2015 Jun 23;10(6):e0129645. doi: 10.1371/journal.pone.0129645. eCollection 2015.

本文引用的文献

1
The yeast sphingolipid signaling landscape.
Chem Phys Lipids. 2014 Jan;177:26-40. doi: 10.1016/j.chemphyslip.2013.10.006. Epub 2013 Nov 9.
2
Coordination of rapid sphingolipid responses to heat stress in yeast.
PLoS Comput Biol. 2013;9(5):e1003078. doi: 10.1371/journal.pcbi.1003078. Epub 2013 May 30.
3
Effects on vesicular transport pathways at the late endosome in cells with limited very long-chain fatty acids.
J Lipid Res. 2013 Mar;54(3):831-842. doi: 10.1194/jlr.M034678. Epub 2013 Jan 16.
4
Molecular convergence of bacterial and eukaryotic surface order.
J Biol Chem. 2011 Nov 25;286(47):40631-7. doi: 10.1074/jbc.M111.276444. Epub 2011 Sep 30.
5
Construction of a DOPC/PSM/cholesterol phase diagram based on the fluorescence properties of trans-parinaric acid.
Langmuir. 2011 Jul 5;27(13):8339-50. doi: 10.1021/la201427w. Epub 2011 May 31.
6
Reassessment of the role of plasma membrane domains in the regulation of vesicular traffic in yeast.
J Cell Sci. 2011 Feb 1;124(Pt 3):328-37. doi: 10.1242/jcs.078519. Epub 2011 Jan 11.
8
Yeast lipids can phase-separate into micrometer-scale membrane domains.
J Biol Chem. 2010 Sep 24;285(39):30224-32. doi: 10.1074/jbc.M110.123554. Epub 2010 Jul 20.
9
Greasing their way: lipid modifications determine protein association with membrane rafts.
Biochemistry. 2010 Aug 3;49(30):6305-16. doi: 10.1021/bi100882y.
10
Fatty acid 2-hydroxylase mediates diffusional mobility of Raft-associated lipids, GLUT4 level, and lipogenesis in 3T3-L1 adipocytes.
J Biol Chem. 2010 Aug 13;285(33):25438-47. doi: 10.1074/jbc.M110.119933. Epub 2010 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验