Suppr超能文献

用于减轻抗真菌耐药性的膜靶向抗真菌剂的最新进展。

Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance.

作者信息

Mehta Devashish, Saini Varsha, Bajaj Avinash

机构信息

Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India

出版信息

RSC Med Chem. 2023 Jun 26;14(9):1603-1628. doi: 10.1039/d3md00151b. eCollection 2023 Sep 19.

Abstract

Fungal infections cause severe and life-threatening complications especially in immunocompromised individuals. Antifungals targeting cellular machinery and cell membranes including azoles are used in clinical practice to manage topical to systemic fungal infections. However, continuous exposure to clinically used antifungal agents in managing the fungal infections results in the development of multi-drug resistance adapting different kinds of intrinsic and extrinsic mechanisms. The unique chemical composition of fungal membranes presents attractive targets for antifungal drug discovery as it is difficult for fungal cells to modify the membrane targets for emergence of drug resistance. Here, we discussed available antifungal drugs with their detailed mechanism of action and described different antifungal resistance mechanisms. We further emphasized structure-activity relationship studies of membrane-targeting antifungal agents, and classified membrane-targeting antifungal agents on the basis of their core scaffold with detailed pharmacological properties. This review aims to pique the interest of potential researchers who could explore this interesting and intricate fungal realm.

摘要

真菌感染会引发严重且危及生命的并发症,尤其是在免疫功能低下的个体中。针对细胞机制和细胞膜的抗真菌药物(包括唑类)在临床实践中用于治疗局部和全身性真菌感染。然而,在治疗真菌感染时持续接触临床使用的抗真菌药物会导致多重耐药性的产生,其通过适应不同类型的内在和外在机制来实现。真菌细胞膜独特的化学成分使其成为抗真菌药物研发的有吸引力的靶点,因为真菌细胞难以修饰膜靶点以产生耐药性。在此,我们讨论了现有的抗真菌药物及其详细的作用机制,并描述了不同的抗真菌耐药机制。我们进一步强调了膜靶向抗真菌剂的构效关系研究,并根据其核心骨架对膜靶向抗真菌剂进行了分类,并详细阐述了其药理特性。本综述旨在激发潜在研究人员的兴趣,他们可能会探索这个有趣而复杂的真菌领域。

相似文献

1
Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance.
RSC Med Chem. 2023 Jun 26;14(9):1603-1628. doi: 10.1039/d3md00151b. eCollection 2023 Sep 19.
2
Oxadiazole-Containing Macrocyclic Peptides Potentiate Azole Activity against Pathogenic Species.
mSphere. 2020 Apr 8;5(2):e00256-20. doi: 10.1128/mSphere.00256-20.
3
Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings.
Phytomedicine. 2021 Jul 15;88:153556. doi: 10.1016/j.phymed.2021.153556. Epub 2021 Mar 27.
4
Antifungals discovery: an insight into new strategies to combat antifungal resistance.
Lett Appl Microbiol. 2018 Jan;66(1):2-13. doi: 10.1111/lam.12820. Epub 2017 Dec 11.
5
Recent Progress in Research on Mitochondrion-Targeted Antifungal Drugs: a Review.
Antimicrob Agents Chemother. 2023 Jun 15;67(6):e0000323. doi: 10.1128/aac.00003-23. Epub 2023 May 17.
6
High-Throughput Chemical Screen Identifies a 2,5-Disubstituted Pyridine as an Inhibitor of Candida albicans Erg11.
mSphere. 2022 Jun 29;7(3):e0007522. doi: 10.1128/msphere.00075-22. Epub 2022 May 9.
8
Antifungals: Mechanism of Action and Drug Resistance.
Adv Exp Med Biol. 2016;892:327-349. doi: 10.1007/978-3-319-25304-6_14.
9
New antifungal agents.
Dermatol Clin. 2003 Jul;21(3):565-76. doi: 10.1016/s0733-8635(03)00024-x.
10
New and Promising Chemotherapeutics for Emerging Infections Involving Drug-resistant Non-albicans Candida Species.
Curr Top Med Chem. 2019;19(28):2527-2553. doi: 10.2174/1568026619666191025152412.

引用本文的文献

3
Is a Fungal Apocalypse Inevitable or Just a Hallucination? An Overview of the Antifungal Armamentarium Used in the Fight against Pathogenic Fungi.
ACS Med Chem Lett. 2024 Dec 31;16(3):379-387. doi: 10.1021/acsmedchemlett.4c00568. eCollection 2025 Mar 13.
4
The Significance of Mono- and Dual-Effective Agents in the Development of New Antifungal Strategies.
Chem Biol Drug Des. 2025 Jan;105(1):e70045. doi: 10.1111/cbdd.70045.
5
Garlic-Derived Quorum Sensing Inhibitors: A Novel Strategy Against Fungal Resistance.
Drug Des Devel Ther. 2024 Dec 28;18:6413-6426. doi: 10.2147/DDDT.S503302. eCollection 2024.
6
Polyene-Based Derivatives with Antifungal Activities.
Pharmaceutics. 2024 Aug 14;16(8):1065. doi: 10.3390/pharmaceutics16081065.
7
Design, synthesis and evaluation of 2-phenylpyrimidine derivatives as novel antifungal agents targeting CYP51.
RSC Med Chem. 2023 Nov 21;15(2):492-505. doi: 10.1039/d3md00589e. eCollection 2024 Feb 21.

本文引用的文献

1
Dermatopathology and the Diagnosis of Fungal Infections.
Br J Biomed Sci. 2023 Jun 7;80:11314. doi: 10.3389/bjbs.2023.11314. eCollection 2023.
2
Progress of polymer-based strategies in fungal disease management: Designed for different roles.
Front Cell Infect Microbiol. 2023 Mar 22;13:1142029. doi: 10.3389/fcimb.2023.1142029. eCollection 2023.
3
Sources of Antifungal Drugs.
J Fungi (Basel). 2023 Jan 28;9(2):171. doi: 10.3390/jof9020171.
4
Fungal cell barriers and organelles are disrupted by polyhexamethylene biguanide (PHMB).
Sci Rep. 2023 Feb 16;13(1):2790. doi: 10.1038/s41598-023-29756-w.
5
Immune responses to human fungal pathogens and therapeutic prospects.
Nat Rev Immunol. 2023 Jul;23(7):433-452. doi: 10.1038/s41577-022-00826-w. Epub 2023 Jan 4.
7
New Antifungal Agents with Azole Moieties.
Pharmaceuticals (Basel). 2022 Nov 17;15(11):1427. doi: 10.3390/ph15111427.
8
Acyl chain length tuning improves antimicrobial potency and biocompatibility of short designed lipopeptides.
J Colloid Interface Sci. 2023 Jan 15;630(Pt B):911-923. doi: 10.1016/j.jcis.2022.10.114. Epub 2022 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验