Suppr超能文献

酵母脂质可以相分离成微米尺度的膜域。

Yeast lipids can phase-separate into micrometer-scale membrane domains.

机构信息

Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.

出版信息

J Biol Chem. 2010 Sep 24;285(39):30224-32. doi: 10.1074/jbc.M110.123554. Epub 2010 Jul 20.

Abstract

The lipid raft concept proposes that biological membranes have the potential to form functional domains based on a selective interaction between sphingolipids and sterols. These domains seem to be involved in signal transduction and vesicular sorting of proteins and lipids. Although there is biochemical evidence for lipid raft-dependent protein and lipid sorting in the yeast Saccharomyces cerevisiae, direct evidence for an interaction between yeast sphingolipids and the yeast sterol ergosterol, resulting in membrane domain formation, is lacking. Here we show that model membranes formed from yeast total lipid extracts possess an inherent self-organization potential resulting in liquid-disordered-liquid-ordered phase coexistence at physiologically relevant temperature. Analyses of lipid extracts from mutants defective in sphingolipid metabolism as well as reconstitution of purified yeast lipids in model membranes of defined composition suggest that membrane domain formation depends on specific interactions between yeast sphingolipids and ergosterol. Taken together, these results provide a mechanistic explanation for lipid raft-dependent lipid and protein sorting in yeast.

摘要

脂质筏的概念提出,生物膜有可能基于鞘脂和固醇之间的选择性相互作用形成功能性域。这些域似乎参与了蛋白质和脂质的信号转导和囊泡分拣。尽管有生化证据表明酵母酿酒酵母中的脂质筏依赖的蛋白质和脂质分拣,但缺乏酵母鞘脂与酵母甾醇麦角固醇之间相互作用导致膜域形成的直接证据。在这里,我们表明,来自酵母总脂质提取物的模型膜具有内在的自组织潜力,导致在生理相关温度下存在液体无序-液体有序相共存。对鞘脂代谢缺陷突变体的脂质提取物进行分析,以及在具有明确定义组成的模型膜中对纯化的酵母脂质进行重建,表明膜域形成取决于酵母鞘脂和麦角固醇之间的特异性相互作用。总之,这些结果为酵母中脂质筏依赖的脂质和蛋白质分拣提供了机制解释。

相似文献

1
Yeast lipids can phase-separate into micrometer-scale membrane domains.
J Biol Chem. 2010 Sep 24;285(39):30224-32. doi: 10.1074/jbc.M110.123554. Epub 2010 Jul 20.
3
Generic sorting of raft lipids into secretory vesicles in yeast.
Traffic. 2011 Sep;12(9):1139-47. doi: 10.1111/j.1600-0854.2011.01221.x. Epub 2011 Jun 15.
6
Lipids and lipid domains of the yeast vacuole.
Biochem Soc Trans. 2018 Oct 19;46(5):1047-1054. doi: 10.1042/BST20180120. Epub 2018 Sep 20.
7
Intracellular sphingolipid sorting drives membrane phase separation in the yeast vacuole.
J Biol Chem. 2024 Jan;300(1):105496. doi: 10.1016/j.jbc.2023.105496. Epub 2023 Nov 25.
8
A mutation in sphingolipid synthesis suppresses defects in yeast ergosterol metabolism.
Lipids. 2004 Aug;39(8):747-52. doi: 10.1007/s11745-004-1291-6.

引用本文的文献

1
Yeast Membrane Hydration is Maintained Under Ethanol Exposure.
J Membr Biol. 2025 Sep 15. doi: 10.1007/s00232-025-00359-y.
2
Septin higher-order structure on yeast membranes in vitro.
Nat Commun. 2025 May 30;16(1):5055. doi: 10.1038/s41467-025-60344-w.
3
Sphingolipids containing very long-chain fatty acids regulate Ypt7 function during the tethering stage of vacuole fusion.
J Biol Chem. 2024 Nov;300(11):107808. doi: 10.1016/j.jbc.2024.107808. Epub 2024 Sep 21.
4
Using the yeast vacuole as a system to test the lipidic drivers of membrane heterogeneity in living cells.
Methods Enzymol. 2024;700:77-104. doi: 10.1016/bs.mie.2024.02.015. Epub 2024 Mar 22.
5
Brain glucose induces tolerance of Cryptococcus neoformans to amphotericin B during meningitis.
Nat Microbiol. 2024 Feb;9(2):346-358. doi: 10.1038/s41564-023-01561-1. Epub 2024 Jan 15.
6
Intracellular sphingolipid sorting drives membrane phase separation in the yeast vacuole.
J Biol Chem. 2024 Jan;300(1):105496. doi: 10.1016/j.jbc.2023.105496. Epub 2023 Nov 25.
7
Natamycin interferes with ergosterol-dependent lipid phases in model membranes.
BBA Adv. 2023 Aug 25;4:100102. doi: 10.1016/j.bbadva.2023.100102. eCollection 2023.
8
Lipid saturation controls nuclear envelope function.
Nat Cell Biol. 2023 Sep;25(9):1290-1302. doi: 10.1038/s41556-023-01207-8. Epub 2023 Aug 17.
9
Cellular Responses and Targets in Food Spoilage Yeasts Exposed to Antifungal Prenylated Isoflavonoids.
Microbiol Spectr. 2023 Aug 17;11(4):e0132723. doi: 10.1128/spectrum.01327-23. Epub 2023 Jul 10.
10
The Transcriptional Responses of Ectomycorrhizal Fungus, to Drought Stress.
J Fungi (Basel). 2022 Dec 21;9(1):15. doi: 10.3390/jof9010015.

本文引用的文献

1
Lipid rafts as a membrane-organizing principle.
Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.
3
Characterization of membrane properties of inositol phosphorylceramide.
Biochim Biophys Acta. 2010 Mar;1798(3):453-60. doi: 10.1016/j.bbamem.2009.11.003. Epub 2009 Nov 11.
4
Order of lipid phases in model and plasma membranes.
Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16645-50. doi: 10.1073/pnas.0908987106. Epub 2009 Sep 15.
5
Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network.
J Cell Biol. 2009 May 18;185(4):601-12. doi: 10.1083/jcb.200901145. Epub 2009 May 11.
6
Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology.
Mol Biol Cell. 2009 Apr;20(7):2083-95. doi: 10.1091/mbc.e08-11-1126. Epub 2009 Feb 18.
7
Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry.
Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2136-41. doi: 10.1073/pnas.0811700106. Epub 2009 Jan 27.
9
Atom-scale molecular interactions in lipid raft mixtures.
Biochim Biophys Acta. 2009 Jan;1788(1):122-35. doi: 10.1016/j.bbamem.2008.08.018. Epub 2008 Sep 6.
10
Plasma membranes are poised for activation of raft phase coalescence at physiological temperature.
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10005-10. doi: 10.1073/pnas.0804374105. Epub 2008 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验