Suppr超能文献

通过计算酶表面疏水性预测酶对木质素膜的吸附。

Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity.

机构信息

From the Biosciences Center and.

the Applied Chemicals and Materials Division, National Institute for Standards and Technology, Boulder, Colorado 80305, and.

出版信息

J Biol Chem. 2014 Jul 25;289(30):20960-9. doi: 10.1074/jbc.M114.573642. Epub 2014 May 29.

Abstract

The inhibitory action of lignin on cellulase cocktails is a major challenge to the biological saccharification of plant cell wall polysaccharides. Although the mechanism remains unclear, hydrophobic interactions between enzymes and lignin are hypothesized to drive adsorption. Here we evaluate the role of hydrophobic interactions in enzyme-lignin binding. The hydrophobicity of the enzyme surface was quantified using an estimation of the clustering of nonpolar atoms, identifying potential interaction sites. The adsorption of enzymes to lignin surfaces, measured using the quartz crystal microbalance, correlates to the hydrophobic cluster scores. Further, these results suggest a minimum hydrophobic cluster size for a protein to preferentially adsorb to lignin. The impact of electrostatic contribution was ruled out by comparing the isoelectric point (pI) values to the adsorption of proteins to lignin surfaces. These results demonstrate the ability to predict enzyme-lignin adsorption and could potentially be used to design improved cellulase cocktails, thus lowering the overall cost of biofuel production.

摘要

木质素对纤维素酶的抑制作用是植物细胞壁多糖生物糖化的主要挑战。尽管其机制尚不清楚,但酶与木质素之间的疏水相互作用被假设为驱动吸附的原因。在这里,我们评估了疏水相互作用在酶-木质素结合中的作用。使用非极性原子聚类的估计来量化酶表面的疏水性,确定潜在的相互作用位点。使用石英晶体微天平测量酶对木质素表面的吸附,与疏水簇得分相关。此外,这些结果表明,蛋白质具有优先吸附木质素的最小疏水簇大小。通过比较等电点 (pI) 值与蛋白质对木质素表面的吸附,排除了静电贡献的影响。这些结果证明了预测酶-木质素吸附的能力,并可能用于设计改良的纤维素酶混合物,从而降低生物燃料生产的总成本。

相似文献

1
Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity.
J Biol Chem. 2014 Jul 25;289(30):20960-9. doi: 10.1074/jbc.M114.573642. Epub 2014 May 29.
3
Adsorption behavior of two glucanases on three lignins and the effect by adding sulfonated lignin.
J Biotechnol. 2020 Nov 10;323:1-8. doi: 10.1016/j.jbiotec.2020.07.013. Epub 2020 Jul 18.
4
Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption.
Bioresour Technol. 2013 Apr;133:270-8. doi: 10.1016/j.biortech.2013.01.075. Epub 2013 Jan 26.
5
Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods.
Biotechnol Bioeng. 2015 Mar;112(3):447-56. doi: 10.1002/bit.25359. Epub 2014 Sep 26.
7
A structure-activity understanding of the interaction between lignin and various cellulase domains.
Bioresour Technol. 2022 May;351:127042. doi: 10.1016/j.biortech.2022.127042. Epub 2022 Mar 19.
8
Lignin-derived inhibition of monocomponent cellulases and a xylanase in the hydrolysis of lignocellulosics.
Bioresour Technol. 2017 May;232:183-191. doi: 10.1016/j.biortech.2017.01.072. Epub 2017 Feb 11.
9
Cellulase-lignin interactions-the role of carbohydrate-binding module and pH in non-productive binding.
Enzyme Microb Technol. 2013 Oct 10;53(5):315-21. doi: 10.1016/j.enzmictec.2013.07.003. Epub 2013 Jul 18.
10
Unveiling the role of long-range and short-range forces in the non-productive adsorption between lignin and cellulases at different temperatures.
J Colloid Interface Sci. 2023 Oct;647:318-330. doi: 10.1016/j.jcis.2023.05.152. Epub 2023 May 26.

引用本文的文献

1
Biochemical and inhibitor analysis of recombinant cellobiohydrolases from Phanerochaete chrysosporium.
Biotechnol Biofuels Bioprod. 2024 Nov 29;17(1):138. doi: 10.1186/s13068-024-02584-4.
4
Inhibitory effect of lignin on the hydrolysis of xylan by thermophilic and thermolabile GH11 xylanases.
Biotechnol Biofuels Bioprod. 2022 May 14;15(1):49. doi: 10.1186/s13068-022-02148-4.
5
Fluorescent Imaging of Extracellular Fungal Enzymes Bound onto Plant Cell Walls.
Int J Mol Sci. 2022 May 6;23(9):5216. doi: 10.3390/ijms23095216.
6
A review on marine plastisphere: biodiversity, formation, and role in degradation.
Comput Struct Biotechnol J. 2022 Feb 15;20:975-988. doi: 10.1016/j.csbj.2022.02.008. eCollection 2022.
8
Non-productive binding of cellobiohydrolase i investigated by surface plasmon resonance spectroscopy.
Cellulose (Lond). 2021;28(15):9525-9545. doi: 10.1007/s10570-021-04002-6. Epub 2021 Aug 25.
10
Carbohydrate-binding module -mannosylation alters binding selectivity to cellulose and lignin.
Chem Sci. 2020 Aug 19;11(34):9262-9271. doi: 10.1039/d0sc01812k.

本文引用的文献

1
Revealing nature's cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA.
Science. 2013 Dec 20;342(6165):1513-6. doi: 10.1126/science.1244273.
2
Adsorption of β-glucosidases in two commercial preparations onto pretreated biomass and lignin.
Biotechnol Biofuels. 2013 Nov 25;6(1):165. doi: 10.1186/1754-6834-6-165.
3
Cellulase-lignin interactions-the role of carbohydrate-binding module and pH in non-productive binding.
Enzyme Microb Technol. 2013 Oct 10;53(5):315-21. doi: 10.1016/j.enzmictec.2013.07.003. Epub 2013 Jul 18.
4
Characterization, cloning and functional expression of novel xylanase from Thermomyces lanuginosus SS-8 isolated from self-heating plant wreckage material.
World J Microbiol Biotechnol. 2013 Dec;29(12):2407-15. doi: 10.1007/s11274-013-1409-y. Epub 2013 Jun 23.
7
Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption.
Bioresour Technol. 2013 Apr;133:270-8. doi: 10.1016/j.biortech.2013.01.075. Epub 2013 Jan 26.
8
How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20889-94. doi: 10.1073/pnas.1212034109. Epub 2012 Dec 3.
9
Structures of bovine, equine and leporine serum albumin.
Acta Crystallogr D Biol Crystallogr. 2012 Oct;68(Pt 10):1278-89. doi: 10.1107/S0907444912027047. Epub 2012 Sep 13.
10
Computational protein design with explicit consideration of surface hydrophobic patches.
Proteins. 2012 Mar;80(3):825-38. doi: 10.1002/prot.23241. Epub 2011 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验